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1. Probabilistic methods

In this chapter we will study the most basic applications of the so-called probabilistic
method.

1.1 Diagonal Ramsey numbers

Recall that the Ramsey-number R(r, b) denotes the smallest n such that no matter
how we color the edges of the complete graph Kn with red and blue colors it will
either contain an induced red Kr or a blue Kb. Note that the definition implies that
for n = R(r, b)− 1 there is a coloring of Kn without red Kr and blue Kb.

Theorem 1.1.1 (Erdős). Suppose that the positive integers n, k satisfy the inequality(
n
k

)
21−(

k
2) < 1. Then R(k, k) > n. In particular, R(k, k) > ⌊2k/2⌋ if k ≥ 3.

Proof. We need to show that there exists a coloring of the edge set of Kn that does
not contain either monochromatic red or blue clique Kk. Let us color each edges
with color red or blue with probability 1/2 independently of each other. Now let us
estimate the probability that the coloring is bad, i. e., it contains a monochromatic
red or blue Kk. For each S ⊂ V (G) with |S| = k let AS be the event the induced
subgraph on S is monochromatic. Then

P(coloring is bad) ≤
∑
|S|=k

P(AS) =

(
n

k

)
2

2(
k
2)
.

By the condition of the theorem
(
n
k

)
21−(

k
2) < 1, so the probability that the coloring

is good is positive.

Next we show that for k ≥ 3 and n = ⌊2k/2⌋ the condition of the theorem is
satisfied. Indeed,(

n

k

)
21−(

k
2) <

nk

k!
21−(

k
2) ≤ 2k

2/2

k!
21−(

k
2) =

2(k+2)/2

k!
< 1.

if k ≥ 3.
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1.2 First moment method

In the previous section we have seen some very simple ideas how to find a certain
structure S by proving that it exists with positive probability just by using union
bound. Here we study another very simple technique. This is the so-called first mo-
ment method. In many cases the structure S that we need to find is defined through
some parameter f(S). For instance, we need to prove that there exists a structure
S for which some parameter f(S) satisfies f(S) ≥ ρ. If we find a probability space
in which the expected value of f(S) is bigger or equal to ρ then we can immediately
conclude that f(S) ≥ ρ with positive probability.

1.2.1 Large bipartite subgraphs

Theorem 1.2.1 ([1]). Let G be a graph with n vertices and e(G) edges. Then G has
a bipartite subgraph with at least e(G)/2 edges.

Proof. One can rephrase the statement of the theorem as follows: there exists a cut
(A, V \ A) of G such that the number of edges (e(A, V \ A)) contained in the cut is
at least e(G)/2.

Let us consider the random set A which contains every v ∈ V (G) with probability
1/2 independently of each other. (This way we have defined a probability space.) Let
us consider the random variable X = e(A, V \A). We have to show that with positive
probability X ≥ e(G)/2. To this end it is enough to show that EX = e(G)/2. This is
indeed true. For every edge f ∈ E(G) let us introduce the indicator random variable
Xf which takes value 1 if f is in the cut (A, V \ A), and 0 otherwise. Then

EX = E

 ∑
f∈E(G)

Xf

 =
∑

f∈E(G)

EXf .

(Note that the random variables Xf are not necessarily independent, but the linearity
of expectation holds true even with non-independent random variables.) For all
f ∈ E(G) we have EXf = 1/2 since the end points of f are in the same set with
probability 1/2 and they are in different sets with probability 1/2. Hence

EX =
∑

f∈E(G)

EXf =
∑

f∈E(G)

1

2
=

1

2
e(G).

We are done!
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1.2.2 Independent sets

Theorem 1.2.2 (Caro; Wei). Let G be a graph with vertex degrees d1, . . . , dn. Let
α(G) be the size of the largest independent set of the graph G. Then

α(G) ≥
n∑

i=1

1

di + 1
.

Proof. Consider a random permutation of the vertices. Let us encircle all the vertices
that precede all their neighbors in the given order. Let X(π) be the random variable
that counts the number of encircled vertices. For a given vertex v ∈ V (G) let
Xv be the indicator variable that the the vertex v is encircled or not. Then X =∑

v∈V (G) Xv, consequently
EX =

∑
v∈V (G)

EXv.

Note that for a vertex v we have EXv =
1

dv+1
since the probability that v precedes its

neighbors is the same as saying that v is the first among dv +1 vertices in a random
permutation, and this probability is clearly 1

dv+1
. Hence

EX =
∑

v∈V (G)

EXv =
n∑

i=1

1

di + 1
.

With positive probability X is at least as large as this expected value. On the other
hand, in an arbitrary order the encircled vertices form an independent set since if
two of them were adjacent then the second of the two vertices in the order would
not be encircled. Hence

α(G) ≥ EX =
n∑

i=1

1

di + 1

as required.

Remark 1.2.3. From the above proof one can easily deduce Turán’s theorem.

1.3 Graphs with large chromatic number and girth

Theorem 1.3.1 (Erdős [4]). For arbitrary (k, ℓ) there exists a graph G whose chro-
matic number is at least k and the length of its shortest cycle is at least ℓ.

Proof. Let G(n, p) be the random graph with n vertices such that we draw all edges
with probability p = p(n) independently of each other. In this proof we will set
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p = n−α, where α ≥ 0 is a parameter chosen later. First we estimate the number of
cycles shorter than ℓ . Given vertices v1v2 . . . vr form a cycle if vivi+1 (r+1 = 1) are
all edges, the probability of this event is pr. Naturally, we can choose the sequence
v1v2 . . . vr in n(n − 1) . . . (n − r + 1) ways, we only have to take take into account
that we counted the same cycle 2r ways (rotated and reflected copies). Let X be the
random variable counting the number of cycles of length at most ℓ−1. Furthermore,
let X(v1 . . . vr) (r ≤ ℓ−1) be the indicator random variable that the vertices v1 . . . vr
form a cycle in this order. Then

X =
∑

r,v1...vr

X(v1 . . . vr).

Hence

EX =
∑

r,v1...vr

EX(v1 . . . vr) =
ℓ−1∑
r=3

n(n− 1) . . . (n− r + 1)

2r
pr ≤

ℓ−1∑
r=3

(np)r

2r
.

Set M =
∑ℓ−1

r=3
(np)r

2r
. Suppose that with some choice of p we can ensure that M is

small then with positive probability the number of cycles of length at most ℓ−1 will
be at most M and by throwing out one point from each cycle we get a graph on at
least n −M vertices that does not contain a cycle of length at most ℓ − 1. In fact,
we need to be a little bit more careful as we need that the number of short cycles is
small with large probability. Fortunately, we get it immediately: with probability at
least 1/2 the number of cycles of length at most ℓ− 1 is at most 2M . Otherwise the
expected value would be bigger than M .

Before we try to chose p appropriately let us see how we can bound the chromatic
number χ(G) of G. Here we use the simple fact that

χ(G) ≥ n

α(G)
.

This is true since all coloring class induces an independent set so its size is at most
α(G), so we need at least n

α(G)
colors to color G. So to make χ(G) large, it is enough

to ensure that α(G) is small. Let us bound the probability that α(G) ≥ s. For a set
S of size s let AS be the event that S does not induce any edge. Then

P(α(G) ≥ s) ≤
∑
|S|=s

P(AS) =

(
n

s

)
(1− p)(

s
2) ≤ ns(1− p)(

s
2) ≤ (ne−p(s−1)/2)s.

(In the last step we used the fact that 1 + x ≤ ex is satisfied for all x. This is a
rather standard bound that is quite good if x is small.)
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Now it is clear what we have to keep in mind: let M be small, so we need a small
p, but we also need that s is not too large and so we need that nep(s−1)/2 < 1. We
can easily achieve it as follows: set p = nθ−1 where θ = 1

2(ℓ−1)
and s = ⌈3

p
log n⌉.

Then

M =
ℓ−1∑
r=3

(np)r

2r
≤ nθ(ℓ−1)

ℓ−1∑
r=3

1

2r
≤ n1/2 log n ≤ n

4

if n is large enough. On the other hand,

P(α(G) ≥ s) ≤ (ne−p(s−1)/2)s ≤ 1/4

if n is large enough. Since P(X ≥ 2M) ≤ 1/2 and P(α(G) ≥ s) ≤ 1/4, with positive
probability there exists a graph where the number of short cycles is at most n/2 and
α(G) ≤ s. Now from all cycles of length at most ℓ − 1 let us throw out 1 vertex
and let G∗ be the obtained graph. Then G∗ has at least n/2 vertices and it does not
contain a cycle of length at most ℓ − 1. Furthermore, α(G∗) ≤ α(G) since G∗ is an
induced subgraph of G. Then

χ(G∗) ≥ |V (G∗)|
α(G∗)

≥ n/2

3n1−θ log n
=

nθ

6 log n
.

If n is large enough this is bigger than k. We are done!
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2. Strongly regular graphs

2.1 Introduction

In this chapter we study strongly regular graphs, these are very special simple graphs.
Strongly regular graphs are often very symmetric graphs, and linear algebraic tools
are particularly amenable to study them.

Definition 2.1.1. A graph G is a strongly regular graph with parameters (n, d, a, b)
if it has n vertices, d–regular, two adjacent vertices have exactly a common neighbors,
and two non-adjacent vertices have exactly b common neighbors.

For instance, a 4-cycle is a strongly regular graph with parameters (4, 2, 0, 2)

while a 5-cycle is a strongly regular graph with parameters (5, 2, 0, 1). Note that a
k-cycle is never strongly regular if k ≥ 6. The Petersen-graph is a strongly regular
graph with parameters (10, 3, 0, 1).

{1,3}

{1,2}

{3,5}

{2,5}

{1,4} {2,4}

{3,4}{4,5}

{1,5}{2,3}

Figure 2.1: Petersen-graph as the Kneser(5,2) graph.

In what follows we try to find necessary conditions for the parameters (n, d, a, b)
to enable the existence of a strongly regular graph with parameters (n, d, a, b). The
first one is very elementary.

6



Proposition 2.1.2. Let G be a strongly regular graph with parameters (n, d, a, b).
Then

d(d− 1− a) = (n− d− 1)b.

Proof. Let u be a fixed vertex. Let us count the number of vertex pairs (v1, v2) for
which the following holds: (u, v1) ∈ E(G), (v1, v2) ∈ E(G) and (u, v2) /∈ E(G), and
v1, v2 ̸= u.

We can choose v1 in d different ways, then we can choose v2 from the d neighbors
of v1, but we cannot choose u, and we cannot choose those a vertices which are
connected to u. So the number of these pairs are d(d− 1− a).

On the other hand, we can choose v2 in n − d − 1 different ways, as we cannot
choose u and its neighbors. After choosing v2, we can choose v1 in b ways as u and
v1 has b common neighbors.

Hence d(d− 1− a) = (n− d− 1)b.

2.2 Adjacency matrix and linear algebra

It turns out that strongly regular graphs can be best studied through their adjacency
matrix. The adjacency matrix A(G) of a simple graph G = (V,E) is defined as
follows: it is a symmetric matrix of size |V | × |V | labelled by the vertices of the
graph G, and

A(G)u,v =

{
1 if (u, v) ∈ E(G),
0 if (u, v) /∈ E(G).

If the graph G is clear from the context we will simple write A instead of A(G).
Next let us compute the eigenvalues and its multiplicities of a strongly regular

graph. It will turn out that a strongly regular graph has only 3 different eigenvalues
and the simple fact that the multiplicities of the eigenvalues must be non-negative
integers imposes a very strong condition on the parameters (n, d, a, b).

Observe that for a simple graph G, the entries of A2 can be understood very
easily. In the diagonal of A2 we have the degrees of the vertices, in our case, there
will be d everywhere. On the other hand, for i ̸= j, (A2)ij counts the number of
common neighbors of vertex i and j which is a or b according to i and j are adjacent
or not. So in A2 + (b − a)A we have d’s in the diagonal and b’s everywhere else.
Hence

A2 + (b− a)A− (d− b)I = bJ,

7



where J is the all 1 matrix.
Now let us assume that Ax = λx, where x = (x1, . . . , xn). Then

(A2 + (b− a)A− (d− b)I)x = (λ2 + (b− a)λ− (d− b))x,

while

bJx = b(
n∑

i=1

xi)1.

Hence by comparing the i’th coordinates we get that

(λ2 + (b− a)λ− (d− b))xi = b(
n∑

i=1

xi).

If λ2 +(b− a)λ− (d− b) ̸= 0, then all xi must be equal, and we simply get the usual
eigenvector belonging to d. Otherwise, λ2 + (b− a)λ− (d− b) must be 0, hence

λ = λ± =
a− b±

√
(a− b)2 + 4(d− b)

2
.

It is easy to see that if G is a disconnected strongly regular graph then it must be
the disjoint union of some Kd+1. Since it is not really interesting, let us assume that
G is connected. Then we know that the multiplicity of the eigenvalue d is exactly 1.
Let m+ and m− be the multiplicities of the other two eigenvalues. Since the number
of eigenvalues is n, we know that

1 +m+ +m− = n.

We also know that TrA = 0, so

0 = TrA = 1 · d+m+λ+ +m−λ−.

From this we get that

m± =
1

2

(
n− 1∓ 2d+ (n− 1)(a− b)√

(a− b)2 + 4(d− b)

)
.

Let us summarize our results in a theorem.

Theorem 2.2.1. Let G be a connected strongly regular graph with parameters (n, d, a, b).
Then its eigenvalues are d with multiplicity 1, and

λ± =
a− b±

√
(a− b)2 + 4(d− b)

2

with multiplicity

m± =
1

2

(
n− 1∓ 2d+ (n− 1)(a− b)√

(a− b)2 + 4(d− b)

)
.
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As an example we can compute the eigenvalues of the Petersen-graph. Recall that
this is a strongly regular graph with parameters (10, 3, 0, 1). Then its eigenvalues are
3, 1 and −2, where the multiplicities are m1 = 5, m2 = 4.

The condition that m± are non-negative integers is a surprisingly strong condi-
tion, this is called the integrality condition. As an application, let’s see which strongly
regular graphs have parameters (n, d, 0, 1). We have already seen that the 5-cycle
and the Petersen-graph are such graphs with d = 2 and d = 3. Actually, K2 is also
such graph with d = 1, but it’s a bit cheating since the fourth parameter hasn’t any
meaning, not to mention K1 with d = 0... First of all, note that our first proposition
implies that n = d2 + 1. Indeed, d(d − 1 − a) = (n − d − 1)b with a = 0, b = 1

immediately implies that n = d2 + 1.

Theorem 2.2.2 (Hoffman–Singleton). Let G be a strongly regular graph with pa-
rameters (d2 + 1, d, 0, 1), where d ≥ 2. Then d ∈ {2, 3, 7, 57}.

Proof. The eigenvalues of the graph G are d and

λ± =
−1±

√
4d− 3

2

and its multiplicities are

m± =
1

2

(
d2 ∓ 2d− d2√

4d− 3

)
.

If 2d − d2 = 0, then d = 0 or 2. (For d = 0, the definition works, but we don’t
consider it as a strongly regular graph. We simply excluded it by requiring d ≥ 2.)
If 2d − d2 ̸= 0, then

√
4d− 3 is a rational number. This can only happen if 4d − 3

is a perfect square. Hence 4d− 3 = s2. Then

m± =
1

2

(s2 + 3

4

)2

∓
2
(

s2+3
4

)
−
(

s2+3
4

)2
s

 .

Hence
m+ =

s5 + s4 + 6s3 − 2s2 + 9s− 15

32s
.

Since 32m+ is an integer, we get that s | 15. Hence s ∈ {1, 3, 5, 15}. If s = 1 then
d = 1 which we excuded. So s ∈ {3, 5, 15} whenced ∈ {3, 7, 57}. Together with d = 2

we get that d ∈ {2, 3, 7, 57}.
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Remark 2.2.3. One might wonder whether there is such a graph for d = 7 and d =

57. For d = 7 there is such a graph: it is called the Hoffman-Singleton graph. It is the
unique strongly regular graph with parameters (50, 7, 0, 1) just as the Petersen-graph
and the 5-cycle are the unique strongly regular graphs with parameters (10, 3, 0, 1)

and (5, 2, 0, 1). It is not known whether there is a strongly regular graph with
parameters (3250, 57, 0, 1).

Remark 2.2.4. The following statement is true in general: the eigenvalues of a
strongly regular graph are integers or the parameters of the strongly regular graph
satisfies that (n, d, a, b) = (4k+1, 2k, k−1, k) for some k, the latter graphs are called
conference graphs, for instance the 5–cycle is a conference graph. This statement
can be proved by studying whether 2d+ (n− 1)(a− b) is 0 or not.

Theorem 2.2.5 (Lossers-Schwenk). One cannot decompose K10 into three edge dis-
joint Petersen-graphs.

Proof. Suppose for contradiction that we can decompose K10 into three edge disjoint
Petersen-graphs. Let A1, A2 and A3 be the adjacency matrices of the three Petersen-
graphs. Then

J − I = A1 + A2 + A3.

Note that A1, A2 and A3 has a common eigenvector, namely 1. All other eigenvectors
are orthogonal to this vector. In particular, we can consider the eigenspaces of A1

and A2 belonging to the eigenvalue 1. Let these eigenspaces be V1 and V2. Note
that dimV1 = dimV2 = 5 as the multiplicity of the eigenvalue 1 is 5. We know that
V1, V2 ⊆ 1⊥. Note that 1⊥ is a 9-dimensional vectorspace, so V1 and V2 must have a
non-trivial intersection: let x ∈ V1 ∩ V2. Then

A3x = (J − I)x− A1x− A2x = 0− x− x− x = −3x.

But this is a contradiction since −3 is not an eigenvalue of the Petersen-graph.

Remark 2.2.6. It is possible to pack two Petersen-graphs into K10. The above
proof shows that the remaining edges form a 3–regular graph H with an eigenvalue
−3. This suggests that H should be a bipartite graph. This is indeed true, but one
needs to prove first that H is connected. It is quite easy to prove it as the only
disconnected 3-regular graph on 10 vertices is K4 ∪ K3,3 (why?). It is not hard to
show that H cannot be K4 ∪K3,3.
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Second proof. Suppose that we can decompose K10 into 3 edge-disjoint Petersen-
graphs. Let us color the edges of the three Petersen-graphs with blue, red and green
colors in order to make it easier to refer to them. Let v be any vertex of K10 and let
b1, b2, b3 be the neighbors of v in the blue Petersen-graph. Similarly let r1, r2, r3 and
g1, g2, g3 be the neighbors of v in the red and green Petersen–graphs.

For a moment, let’s put away the green Petersen–graph and let’s just concentrate
on the bipartite graph induced by the vertices b1, b2, b3 and r1, r2, r3. Note that the
edge (v, r1) is a red edge, so it’s not blue! This means that there must be exactly one
blue path of length 2 between v and r1. In other words, r1 is connected by a blue
edge to exactly one of the vertices of b1, b2, b3. Similarly, r2 and r3 are connected
by a blue edge to exactly one of the vertices of b1, b2, b3. This means that there are
exactly 3 blue edges between b1, b2, b3 and r1, r2, r3. By repeating this argument to
b1, b2, b3, we find that there are exactly 3 red edges between b1, b2, b3 and r1, r2, r3.
This means that there are exactly 3 green edges between b1, b2, b3 and r1, r2, r3.

Now let us consider the green Petersen–graph. If we delete the vertices v, g1, g2, g3
from this graph, the green edges induce a 6-cycle on the remaining vertices. Accord-
ing to the previous paragraph, there is a cut of this 6-cycle which contains exactly
3 edges. But this is impossible: a cut of a 6-cycle always contains even number of
edges! Indeed, if we walk around the 6-cycle we need to cross the cut even number of
times to get back to the original side of the cut from where we started our walk.

11



3. Set systems

Given sets A1, . . . , Am ⊆ [n] one can associate the so-called characteristic vector ai to
each set Ai: it is a vector of length n such that the k-coordinate (ai)k is 1 if k ∈ Ai,
and 0 otherwise. Since it is a 0 − 1 vector we can consider it in any field F. Note
that for the usual scalar product we get that (ai, ai) = |Ai| and (ai, aj) = |Ai ∩ Aj|.
This is the key property that we will use in several proofs.

3.1 The clubs of Oddtown

Theorem 3.1.1. Let A1, . . . , Am ⊆ [n] such that |Ai| is odd for i = 1, . . . ,m and
|Ai ∩ Aj| is even for i ̸= j. Then m ̸= n.

Proof. Let ai ∈ Fn
2 be the characteristic vector of the set Ai. We show that a1, . . . , am

are linearly independent over F2. This would immediately give that m ≤ n. Suppose
for contradiction that there are λ1, . . . , λn ∈ F2 such that not all of them are 0 and

n∑
i=1

λiai = 0.

Take the scalar product of both sides with ai. Since (ai, ai) = 1 and (ai, aj) = 0 we
get that

0 =

(
ai,

n∑
j=1

λjaj

)
= λj

for all 1 ≤ i ≤ m contradicting that not all λi = 0. Hence a1, . . . , am are linearly
independent over F2, consequently m ≤ n.
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3.2 Same-size intersections

Theorem 3.2.1 (Generalized Fisher inequality). If the nonempty sets A1, . . . , Am ⊆
[n] are distinct such that all |Ai ∩ Aj| have the same size for i ̸= j, then m ≤ n.

Proof. Suppose that |Ai ∩ Aj| = t for i ̸= j. If for some i the set Ai has size t, then
Ai ⊆ Aj for all j ̸= i, and the sets Aj \ Ai for j ̸= i must be disjoint. This means
that m ≤ 1 + n− t ≤ n since t ≥ 1 as the sets are non-empty. Thus in what follows
we can assume that |Ai| > t.

Let ai ∈ Rn be the characteristic vector of the set Ai. We show that a1, . . . , am

are linearly independent over R. This would immediately give that m ≤ n. Suppose
for contradiction that there are λ1, . . . , λn ∈ R such that not all of them are 0 and

n∑
i=1

λiai = 0.

Take the scalar product of both sides with ai. Since (ai, ai) = |Ai| and (ai, aj) = t

we get that

0 =

(
m∑
j=1

λjaj,
m∑
j=1

λjaj

)
=

m∑
i=1

|Ai|λ2
i+2t

∑
1≤i<j≤m

λiλj =
m∑
i=1

(|Ai|−t)λ2
i+

(
m∑
i=1

λi

)2

.

Since λi are not all 0, and |Ai| > t we get that
∑m

i=1(|Ai| − t)λ2
i + (

∑m
i=1 λi)

2
> 0,

a contradiction that proves that a1, . . . , am are linearly independent over R, conse-
quently m ≤ n.

3.3 Forbidden intersections

Theorem 3.3.1. Let L ⊆ [n] such that |L| = s. Let A1, . . . , Am ⊆ [n] be a set
system satisfying |Ai| /∈ L for i = 1, . . . ,m, and |Ai ∩ Aj| ∈ L for 1 ≤ i < j ≤ m.
Then

m ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

1

)
+

(
n

0

)
.

We will actually prove the following stronger statement.

Theorem 3.3.2. Let p be a prime. Let L ⊆ [n] such that |L| = s. Let A1, . . . , Am ⊆
[n] be a set system satisfying |Ai| /∈ L (mod p) for i = 1, . . . ,m, and |Ai ∩ Aj| ∈
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L (mod p) for 1 ≤ i < j ≤ m. Then

m ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

1

)
+

(
n

0

)
.

Proof. Let L = {ℓ1, . . . , ℓs} and let ai denote the characteristic vector of the set Ai.
Consider the polynomial fi : {0, 1}n → Fp for which

fi(x) =
s∏

j=1

((ai, x)− ℓj).

Then fi(ai) ̸= 0 in Fp, but for any k ̸= i we have fi(ak) = 0. This shows that
f1, . . . , fm are linearly independent. Now let us replace xt

j with xj for t ≥ 1 in each
monom of each polynomial fi(x). Observe that on {0, 1}n this does not change the
value of any fi so for the obtained f̂i we get the same values. This shows that
f̂1, . . . , f̂m are also linearly independent over Fp. These are multilinear polynomials
of degree at most s, and so they are in a vector space of dimension

(
n
s

)
+
(

n
s−1

)
+

· · ·+
(
n
1

)
+
(
n
0

)
, that is,

m ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

1

)
+

(
n

0

)
.

Conjecture 3.3.3 (Erdős). Suppose that 0 < λ < 1/2. Then there exist an ε =

ε(λ) > 0 and an n0 = n0(λ) such that for any n > n0 and integer t = λn if the
set system A1, . . . , Am ⊆ [n] satisfies that |Ai ∩ Aj| ≠ t for 1 ≤ i < j ≤ n, then
m ≤ (2− ε)n.

Theorem 3.3.4. Let p be a prime and n = 4p − 1. Suppose that A1, . . . Am ⊆ [n]

such that |Ai| = 2p − 1 for 1 ≤ i ≤ m, and |Ai ∩ Aj| ≠ p − 1 for 1 ≤ i < j ≤ m.
Then m < 1.8n.

Proof. We can apply the previous theorem with L = {0, 1, . . . , p− 2}. Then

m ≤
(
4p− 1

p− 1

)
+

(
4p− 1

p− 2

)
+ · · ·+

(
4p− 1

0

)
< p

(
4p

p

)
.

By Stirling’s formula we have(
4p

p

)
≈

(
4p
e

)4p(
3p
e

)3p (p
e

)p ·
√
2π · 4p√

2π · 3p
√
2π · p

14



≈
(

1

(1/4)1/4(3/4)3/4

)4p

· c
√
p

< 1.84p−1

for large enough p.

Remark 3.3.5. The function

h(x) := x ln

(
1

x

)
+ (1− x) ln

(
1

1− x

)
is called the binary entropy function. From the above computation we can see that(

n

k

)
≈ c√

n
exp

(
h

(
k

n

))
.

One can show that for k ≤ n/2 we have

k∑
j=0

(
n

j

)
≤ exp

(
h

(
k

n

))
.

3.3.1 Coloring Rd

In this section we study the so-called Hadwiger–Nelson problem. In this problem we
aim to find the minimal number of colors for which one can color the points of Rd

such that no two points of unit distance get the same color. One can rephrase this
problem as follows. For an integer d let us consider the infinite graph whose vertices
are the points of Rd and two vertices are adjacent if their distance is exactly 1. Let
χ(d) denote the chromatic number of this graph. It is easy to see that χ(d) ≥ d+ 1

because of a regular simplex. In general, it is true that it is sufficient to consider
finite subgraphs of Rd in order to determine the chromatic number of Rd. It is a nice
exercise that χ(2) ≥ 4, and it was recently shown by Aubrey de Grey that χ(2) ≥ 5.
On the other hand, there is a construction showing χ(2) ≤ 7.
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Figure 3.1: Coloring of the plane with 7 colors without unit distance.

Here we prove that χ(n) grows exponentially.

Theorem 3.3.6. If n = 4p− 1 is large enough and p is a prime, then χ(n) > 1.1n,
and for every large enough n we have χ(n) > 1.1n/2.

Proof. Instead of distance 1 we will consider distance
√
2p. Consider the points

among {0, 1}n that contains exactly 2p − 1 pieces of 1’s. We can consider them as
characteristic vectors of sets. Note that ||vA − vB||2 =

√
2p if and only if |A ∩ B| =

p − 1. So if we color these points, then a color class avoiding distance
√
2p has at

most 1.8n elements by Theorem 3.3.4. Hence we have at least (4p−1
2p−1)
1.8n

> 1.1n color
classes. The second statement follows from the fact that for every n there is a prime
between n and 2n.

3.3.2 Fall of Borsuk’s conjecture

Theorem 3.3.7 (Borsuk). Given the sphere of diameter D in Rd. Then one needs
at least d+1 closed sets to decompose it into sets of diameter less than D. It suffices
to use d+ 1 sets for such a decomposition.

From this theorem one can deduce the following seemingly stronger result.

Theorem 3.3.8. Given a bounded, closed, convex set K in Rd with diameter D such
that for each boundary point of K there exists exactly one supporting hyperplane.
Then K can be decomposed into d+ 1 closed sets of diameter strictly less than D.

This theorem lead Borsuk to conjecture the following.
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Conjecture 3.3.9 (Borsuk). Every bounded, closed set K of diameter D can be
decomposed into d+ 1 closed sets of diameter strictly less than D.

The conjecture is true for d = 2, nevertheless the next theorem shows that it is
false for large d.

Theorem 3.3.10 (Kahn-Kalai). Let p be a prime and d =
(
4p−1
2

)
, then there exists a

bounded, closed set K of diameter D whose decomposition into closed sets of diameter
less than D requires at least 1.1

√
d sets.

Proof. Let us consider the complete graph K4p−1 and let us associate a basis vector
eij for each edge of it in Rd that is 1 at coordinate ij and 0 everywhere else. For
each set S ⊆ [4p− 1] of size 2p− 1 we associate a point S∗ in Rd for which

(S∗)ij =

{
1 if(i, j) ∈ E(S, Sc)

0 otherwis

For S, T ⊆ [4p− 1] the distance of S∗ and T ∗ is

d(S∗, T ∗)2 = 2k(2p− 1− k) + 2(k + 1)(2p− 1− k) = (4k + 2)(2p− 1− k)

if |S ∩ T | = k. This has a maximum at p − 3
4

among real numbers and at p − 1

among integers. So if we want to avoid putting two points S∗ and T ∗ with diameter
D into the same set of the decomposition, then we have to avoid sets S and T with
|S ∩ T | = p− 1. It means that by Theorem 3.3.4 we need at least(

4p−1
2p−1

)
1.84p−1

sets in the decomposition. This is bigger than 1.14p−1 > 1.1
√
d for large p.
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4. Packing complete bipartite
graphs

4.1 Graham–Pollak theorem

In this chapter we prove the Graham-Pollak theorem and a variant of it.

Theorem 4.1.1 (Graham–Pollak). If the edge sets of the complete bipartite graphs
H1, H2, . . . , Hm decomposes the edge set of the complete graph Kn, then m ≥ n− 1.

Proof. (Tverberg) Suppose for contradiction that m < n − 1. Suppose that Hi has
vertex set Ai ∪ Bi. For each vertex j of Kn let us introduce a variable xj. Let us
consider the equations

∑
j∈Ai

xi = 0 (i = 1, . . . ,m), and
n∑

j=1

xj = 0.

We have n variables and m + 1 equations. If m < n − 1, then it has a non-zero
solution x ∈ Rn. Observe that

0 <

n∑
j=1

x2
j =

(
n∑

j=1

xj

)2

−2
∑

1≤i<j≤n

xixj =

(
n∑

j=1

xj

)2

−2
m∑
i=1

(∑
j∈Ai

xj

)(∑
k∈Ai

xk

)
= 0.

This contradiction proves our theorem.

A generalization of the Graham–Pollak theorem is the following.

Theorem 4.1.2 (Witsenhausen; Graham and Pollak). Let G be a graph and suppose
that its edge set decomposes to m complete bipartite graphs H1, . . . , Hm. Let n+(G)

and n−(G) be the number of positive and negative eigenvalues of the adjacency matrix
AG, respectively. Then m ≥ max(n+(G), n−(G)).
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Remark 4.1.3. The eigenvalues of AKn are n− 1 with multiplicity 1, and −1 with
multiplicity n− 1, so this is indeed a generalization of the previous theorem.

Proof. Suppose that Hi has vertex set Ai ∪ Bi, and their characteristic vectors are
ui and vi. Consider the matrices Mi = uiv

T
i + viu

T
i . Then AG = M1 + · · · +Mm. If

w ∈ ⟨u1, . . . , um⟩⊥, then

wTAGw =
m∑
i=1

wTMiw =
k∑

i=1

wT (uiv
T
i + viu

T
i )w = 0.

Clearly, dim⟨u1, . . . , um⟩⊥ = n−m. Consider the vector space V+ spanned by eigen-
vectors corresponding to the positive eigenvalues. Its dimension is n+. If w ∈ V+

a non-zero vector, then wTAGw > 0. Hence ⟨u1, . . . , um⟩⊥ ∩ V+ = 0. Hence
n−m+ n+ ≤ n, that is, n+ ≤ m. The inequality n− ≤ m follows analogously.

Let us mention a theorem whose proof is completely analogous.

Theorem 4.1.4. Let G be a graph, whose largest independent set has size α(G). Let
n′
+(G) and n′

−(G) be the number of non-negative and non-positive eigenvalues of the
adjacency matrix AG, respectively. Then m ≤ max(n′

+(G), n′
−(G)).

Remark 4.1.5. Be careful, in Theorem 4.1.2 we consider positive eigenvalues while
in Theorem 4.1.4 we consider non-negative eigenvalues, that is why we use n′

+(G)

instead of n+(G). Also the inequality is in the opposite direction.

The problem of packing complete bipartite graphs into the complete graph is
originated in another problem about graph addresses. Suppose that we are given a
graph G on n vertices, and for each vertex v we want to make an “address”, a length k

vector with elements 0, 1, ∗ satisfying the following property. If u and v has distance
d in the graph, then their addresses differ at exactly d places not counting ∗, so we
only consider places where one of them is 0 and the other one is 1. A little thinking
shows that it is the same as covering the complete graph Kn with k complete bipartite
graphs such that each pair u and v is covered by exactly d complete bipartite graphs,
their distance in the graph G. One can show that k = n− 1 always suffices, and as
the above theorem shows you need k = n−1 for complete graphs. One can also show
that for trees one also needs n − 1-long addresses. The underlying fact is that the
distance matrix of a tree has n− 1 negative eigenvalues and one positive eigenvalue,
and so one can modify the proof of Theorem 4.1.2 to that case. Note that in this
problem

∑m
i=1 Mi is equal to the distance matrix, not the adjacency matrix.
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5. Enumerative combinatorics

5.1 Generating functions

There are various ways to associate a function to a sequence of numbers. Here we
discuss the two most common ways.

Definition 5.1.1. Given a sequence of numbers a0, a1, a2, . . . the function
∞∑
n=0

anx
n

is called the generating function of the sequence. The function
∞∑
n=0

an
xn

n!

is called the exponential generating functions.

Remark 5.1.2. It is of course a natural question which one to use in a specific
problem. If the sequence an grows faster than any exponential function, then most
likely one needs to use the exponential generating function

∑∞
n=0 an

xn

n!
. Note that if

A1(x) =
∞∑
n=0

anx
n, B1(x) =

∞∑
n=0

bnx
n, C1(x) = A1(x)B1(x) =

∞∑
n=0

cnx
n,

then
n∑

k=0

akbn−k = cn,

while if

A2(x) =
∞∑
n=0

an
xn

n!
, B2(x) =

∞∑
n=0

bn
xn

n!
, C2(x) = A2(x)B2(x) =

∞∑
n=0

cn
xn

n!
,

then

cn =
n∑

k=0

(
n

k

)
akbn−k.
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This suggests that if certain expression contains an
(
n
k

)
, then one might need to use

the exponential generating function.
It is in general true that the functions are designed for a specific kind of multi-

plication. For instance, in number theory they quite often use the function F (s) =∑∞
n=1

an
ns , because the corresponding multiplication is cn =

∑
d | n adbn/d.

5.2 Fibonacci numbers

Let us consider Fibonacci numbers. Recall that F0 = 0, F1 = 1 and Fn = Fn−1+Fn−2

for n ≥ 2. Consider

F (x) =
∞∑
n=0

Fnx
n.

Proposition 5.2.1. We have

F (x) =
x

1− x− x2
.

Proof. We have

F (x) = F0 + F1x+ F2x
2 + F3x

3 + F4x
4 + . . .

xF (x) = F0x+ F1x
2 + F2x

3 + F3x
4 + . . .

x2F (x) = F0x
2 + F1x

3 + F2x
4 + . . .

Hence
(1− x− x2)F (x) = F0 + (F1 − F0)x = x,

thus
F (x) =

x

1− x− x2
.

Corollary 5.2.2. We have

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

Proof. Let φ1 =
1+

√
5

2
and φ2 =

1−
√
5

2
. Then 1− x− x2 = (1−φ1x)(1−φ2x). Hence

F (x) =
x

1− x− x2
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=
x

(1− φ1x)(1− φ2x)

=
1√
5

(
1

1− φ1x
− 1

1− φ2x

)
=

1√
5

∞∑
n=0

(φ1x)
n − 1√

5

∞∑
n=0

(φ2x)
n

=
∞∑
n=0

1√
5
(φn

1 − φn
2 )x

n

Since F (x) =
∑∞

n=0 Fnx
n we get that Fn = 1√

5
(φn

1 − φn
2 ).

Remark 5.2.3. One can also deduce Corollary 5.2.2 from the fact that for the ma-

trix M =

(
1 1

1 0

)
we have Mn =

(
Fn+1 Fn

Fn Fn−1

)
. This approach also gives an

O(log n) algorithm to compute the Fibonacci numbers: first compute M,M2,M4,M8, . . . ,
then Mn = M2k0M2k1 . . .M2kr by writing up n in the binary expansion. This ap-
proach also provides simple proofs for various identities of the Fibonacci numbers by
using easy observations like Mn+m = MnMm.

5.3 Catalan numbers revisited

In this section we revisit Catalan numbers.

Definition 5.3.1. For n ≥ 1 let Cn be the number of sequences (s1, s2, . . . , s2n)

satisfying si = ±1,
∑k

i=1 si ≥ 0 and
∑2n

i=1 si = 0. Let C0 = 1.

Remark 5.3.2. In the first semester you learned quite a lot of combinatorial enu-
meration problems for which the answer is a Catalan number. (For instance, the
number of triangulations of a convex (n+2)-gon is such a problem.) For a thorough
treatment see the book of Richard Stanley: Catalan numbers.

Fun fact: 42 is a Catalan number, so if you want a question for which the answer
is 42, just look up Stanley’s book.

Proposition 5.3.3. (a) For n ≥ 1 we have

Cn+1 =
n∑

k=0

CkCn−k.
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(b) Let C(x) =
∑∞

n=0Cnx
n. Then

C(x) =
1−

√
1− 4x

2x
.

Proof. (a) Let Cn be the set of Catalan sequences with 2n elements. Let s1s2s3 . . . s2n+1s2n+2

a Catalan sequence. Let 2k + 2 be the first time when s1 + · · · + s2k+2 = 0. Note
that it is possible that k = 0 (the sequence starts with 1 and −1) and it is also pos-
sible that k = n. Then s2s3 . . . s2k+1 is again a (possibly empty) Catalan sequence
and s2k+3 . . . s2n+2 is also a Catalan sequence. It is easy to see that it is a bijection
between Cn+1 and

⋃n
k=0 Ck × Cn−k. Hence

Cn+1 =
n∑

k=0

CkCn−k.

(b) We have

C(x)2 =
∞∑
n=0

n∑
k=0

CkCn−kx
n =

∞∑
n=0

Cn+1x
n =

C(x)− 1

x
.

Thus xC(x)2 − C(x) + 1 = 0. The solution of this quadratic equation is

1±
√
1− 4x

2x
.

We only need to find out whether we should take positive or negative sign. Since
C(0) = 1 we need to take the negative sign:

C(x) =
1−

√
1− 4x

2x
.

Corollary 5.3.4. We have

Cn =

(
2n
n

)
n+ 1

.

Proof. Recall that

(1 + x)α =
∞∑
n=0

(
α

n

)
xn,

where (
α

n

)
=

α(α− 1) . . . (α− n+ 1)

n!
.
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Note that (
1
2

n

)
=

1

n!

1

2

(
−1

2

)(
−3

2

)
. . .

(
−3− 2n

2

)
=

(−1)n−1

2nn!
1 · 3 · · · · · (2n− 3)

=
(−1)n−1

(2n− 1)2nn!

1 · 2 · 3 · · · · · (2n− 1) · 2n
2 · 4 · · · · · 2n

=
(−1)n−1

(2n− 1)2nn!

(2n)!

2nn!

=
(−1)n−1

4n(2n− 1)

(
2n

n

)
Thus

C(x) =
1

2x

(
1−

∞∑
n=0

(−1)n−1

4n(2n− 1)

(
2n

n

)
(−4)nxn

)
By comparing the coefficient of xn we get that

Cn =

(
2n+2
n+1

)
2(2n+ 1)

=

(
2n
n

)
n+ 1

.

Remark 5.3.5. Another notable power series using the fact (1+x)α =
∑∞

n=0

(
α
n

)
xn,

is that
1√

1− 4x
=

∞∑
n=0

(
2n

n

)
xn.

Beyond this course 5.3.6. Catalan numbers play an important role in the theory
of random matrices. The reason is the following: Catalan numbers are the moments
of the so-called Wigner’s semicircle distribution. Consider the function

f(x) =
1

2π

√
4− x2

on the interval [−2, 2]. Then ∫ 2

−2

f(x) dx = 1,

so it is a density function of a probability distribution, this is Wigner’s semicircle
distribution. Then ∫ 2

−2

f(x)x2n dx = Cn,

and ∫ 2

−2

f(x)x2n−1 dx = 0.
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5.4 Snake oil method

Generating functions also provide a powerful tool to evaluate certain sums. The
so-called snake oil method is very simple, yet handles various sums. Roughly, the
idea is the following. Suppose we have some sum that we would like to evaluate,
say

∑n
k=0

(
n
k

)
. Let us call it An. Then we determine

∑∞
n=0Anx

n: generally this
requires a change of summation and some simple algebraic manipulation. Once we
have the generating function, in our case 1

1−2x
, we start to determine its coefficients:

1
1−2x

=
∑∞

n=0 2
nxn. From this we conclude that An = 2n. Below you can find several

examples for this strategy. Can you fill the gaps in the above argument?

Proposition 5.4.1. We have

n∑
k=0

(
n+ k

2k

)
2n−k =

1

3
(2 · 4n + 1).

Proof. Let

An =
n∑

k=0

(
n+ k

2k

)
2n−k.

Then

∞∑
n=0

Anx
n =

∞∑
n=0

(
n∑

k=0

(
n+ k

2k

)
2n−k

)
xn

=
∞∑
k=0

1

2k

(∑
n

(
n+ k

2k

)
(2x)n

)

=
∞∑
k=0

1

2k
(2x)k

(1− 2x)2k+1

=
1

1− 2x

∞∑
k=0

(
x

(1− 2x)2

)k

=
1

1− 2x

1

1− x
(1−2x)2

=
1− 2x

1− 5x+ 4x2
=

1− 2x

(1− x)(1− 4x)

=
2

3

1

1− 4x
+

1

3

1

1− x

=
2

3

∑
n

(4x)n +
1

3

∑
n

xn.
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Hence
n∑

k=0

(
n+ k

2k

)
2n−k =

1

3
(2 · 4n + 1).

Proposition 5.4.2. We have∑
k

(
m

k

)(
n+ k

m

)
=
∑
k

(
m

k

)(
n

k

)
2k.

Proof. Set

An =
∑
k

(
m

k

)(
n+ k

m

)
,

and
Bn =

∑
k

(
m

k

)(
n

k

)
2k

Then
∞∑
n=0

Anx
n =

∞∑
n=0

(∑
k

(
m

k

)(
n+ k

m

))
xn

=
∞∑
k=0

(
m

k

)(∑
n

(
n+ k

m

)
xn

)

=
∞∑
k=0

(
m

k

)
xm−k

(1− x)m+1

=
xm

(1− x)m+1

∑
k

(
m

k

)
x−k

=
xm

(1− x)m+1

(
1 +

1

x

)m

=
(1 + x)m

(1− x)m+1
.

On the other hand,

∞∑
n=0

Bnx
n =

∞∑
n=0

(∑
k

(
m

k

)(
n

k

)
2k

)
xn

=
∞∑
k=0

(
m

k

)
2k

(∑
n

(
n

k

)
xn

)

=
∞∑
k=0

(
m

k

)
2k

xk

(1− x)k+1
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=
1

1− x

∞∑
k=0

(
m

k

)(
2x

1− x

)k

=
1

1− x

(
1 +

2x

1− x

)m

=
(1 + x)m

(1− x)m+1
.

Hence An = Bn for all n.
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6. Number partitions

6.1 Basics

A number partition is a decomposition of a positive number as a sum of non-
increasing numbers. For instance, 5 has the following partitions: 5 = 4 + 1 =

3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1. Each partition
has a graphical representations called Ferrers diagram. The conjugate of a Ferrers
diagramm is a Ferrers diagram obtained from the original one via a reflection to a
45◦ line. This section is based (more or less) on the treatment of the book A Course
in Combinatorics by Van Lint and Wilson (Chapter 15).

Proposition 6.1.1. Let pk(n) be the number of partitions of n into at most k parts.
Let pk(n) be the number of partitions of n with at most k parts. Then pk(n) = pk(n).

Proof. There is a natural bijection between the two sets: associate the conjugate
partition to a partition.

Next let us understand the generating function of the sequence (pk(n)).

Theorem 6.1.2. We have

∞∑
n=0

pk(n)x
n =

k∏
i=1

1

1− xi
,

where pk(0) = 1.

Proof. Note that

k∏
i=1

1

1− xk
=

k∏
i=1

(1 + xi + x2·i + x3·i + . . . ).

If we expand this product, the coefficient of xn will come from the products of the
form xm1·1xm2·2 · · ·xmk·k, where m1, . . . ,mk ≥ 0 and m1 · 1 + · · · + mk · k = n.
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Note that this naturally correspond to the partition in which we have m1 1’s, m2

2’s,...,mk k’s and vice verse each partition naturally corresponds to such a term in
the expansion.

The same idea helps us to understand the generating function of all partitions.

Theorem 6.1.3. We have
∞∑
n=0

p(n)xn =
∞∏
i=1

1

1− xi
,

where p(0) = 1.

Proof. As before
∞∏
i=1

1

1− xi
=

∞∏
i=1

(1 + xi + x2·i + x3·i + . . . ).

It might be scary to consider an infinite product, but observe that if you want to
compute the coefficient of xn then you always have to choose the term 1 from the
terms 1+xi+x2·i+x3·i+ . . . when i ≥ n+1. Let us introduce the notation [xn]f(x)

for an if f(x) =
∑

n anx
n. Then

[xn]
∞∏
i=1

(1 + xi + x2·i + x3·i + . . . ) = [xn]
n∏

i=1

(1 + xi + x2·i + x3·i + . . . ) = pn(n) = p(n)

by the previous theorem and the fact that the largest part in a partition of n is at
most n. Hence

∞∑
n=0

p(n)xn =
∞∏
i=1

1

1− xi
.

One can think to generating functions
∑

anx
n in two different ways:

(i) they are algebraic objects which form a ring, you can manipulate them alge-
braically, but you cannot plug any number (different form 0) into them,

(ii) they are analytic functions with some convergence radius.

The function
∑

n!xn is a good example for the difference between (i) and (ii).
Since the convergence radius is 0 for this function, you will hardly be able to do
anything with it analytically, but this is a completely eligible algebraic expression, a
"prominent" element of a ring.
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Theorem 6.1.4. Let po(n) be the number of partitions of n into odd parts. Let pu(n)
be the number of partitions of n into unequal parts. Then

(a)
∞∑
n=0

po(n)x
n =

∞∏
i=1

1

1− x2i−1
.

(b)
∞∑
n=0

pu(n)x
n =

∞∏
i=1

(1 + xi).

(c)
po(n) = pu(n).

Proof. The proof of part (a) and (b) goes as before. We only concentrate to part
(c). Note that

1 + xi =
1− x2i

1− xi
,

hence
∞∏
i=1

(1 + xi) =
∞∏
i=1

1− x2i

1− xi
=

∞∏
i=1

1

1− x2i−1
.

since the terms 1−x2k will cancel from the denominator and the enumerator. Hence
po(n) = pu(n).

Second proof for part (c). We will give a bijection between the set of partitions of n
into odd parts and the set of partitions of n into unequal parts. The key ingredient
of this bijection will be the observation that any number can be uniquely written in
the form 2k(2t+ 1), where k, t ≥ 0. So let (λ1, . . . , λm) be a partition of n such that
λ1 > · · · > λm. Let λi = 2ki(2ti + 1) and replace λi by 2ki pieces of 2ti + 1. Then
clearly we obtained a partition of n to odd parts.

Now we show that we can decode the original partition. Let’s count the number
of parts 2ti+1 in a partition of n into odd parts. Assume that there ri pieces of 2ti+1.
Then ri can be uniquely written in base 2, i.e., there are unique s1 > s2 > · · · > sj

such that ri = 2s1 + · · · + 2sj . Now replace the ri pieces of 2ti + 1 with elements
2sn(2ti + 1), where 1 ≤ n ≤ j.

Hence we gave a bijection between the set of partitions of n to odd parts and the
set of partitions of n to unequal parts and so po(n) = pu(n).
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An example for this proof is the following. Consider the partition 8+6+4+3+1,
then 8 = 23 · 1, 6 = 2 · 3, 4 = 22 · 1, 3 = 3 and 1 = 1. Hence the corresponding
partition to odd parts will contain 8+4+1 = 13 pieces of 1’s 2+1 = 3 pieces of 3’s.
And if you get the partition of 13 1’s and 3 pieces of 3’s then we know that we have
to decompose 13 to 2-powers which can be uniquely done as 8+ 4+ 1, and similarly
3 = 2 + 1 so we get back the original partition.

6.2 An upper bound

In this section we give an upper bound for p(n). In this proof we consider the
generating function of p(n) as an analytic function.

Theorem 6.2.1. For n > 2 we have

p(n) <
π√

6(n− 1)
eπ
√

2
3
n.

Remark 6.2.2. Hardy and Ramanujan proved that p(n) ≍ 1
4
√
3n
eπ
√

2
3
n, so limn→∞

p(n)
f(n)

=

1, where f(n) = 1
4
√
3n
eπ
√

2
3
n. As we can see our upper bound agree with this function

in the main term (and we won’t need to work very hard for this bound).

Proof. (Van Lint) Recall that

P (t) =
∞∏
k=1

1

1− tk
=

∞∑
k=1

p(k)tk.

We will see that P (t) is convergent if |t| < 1. Actually, we will choose t to be
0 < t < 1 later. The idea is the following, we will give an upper bound to P (t) and
we will choose a t such that p(n)tn dominates the terms in P (t).

logP (t) = log

(
∞∏
k=1

1

1− tk

)
=

∞∑
k=1

log
1

1− tk
.

Note that

log
1

1− tk
= − log(1− tk) =

∞∑
j=1

tkj

j
.

Then

logP (t) =
∞∑
k=1

∞∑
j=1

tkj

j
=

∞∑
j=1

1

j

∞∑
k=1

tkj =
∞∑
j=1

1

j

tj

1− tj
.
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Now let 0 < t < 1, then

1− tj

1− t
= 1 + t+ t2 + · · ·+ tj−1 > jtj−1,

and so
tj

1− tj
< tj

1

(1− t)jtj−1
=

1

j

t

1− t
.

Then

logP (t) =
∞∑
j=1

1

j

tj

1− tj
<

∞∑
j=1

1

j

1

j

t

1− t
=

t

1− t

∞∑
j=1

1

j2
=

π2

6

t

1− t
.

Now we give a lower bound to P (t). Note that p(n) is a monotone increasing sequence
(why?), so

P (t) =
∞∑
k=1

p(k)tk ≥
∞∑
k=n

p(k)tk ≥ p(n)
∞∑
k=n

tk = p(n)
tn

1− t
.

Hence
log p(n) + log

tn

1− t
< logP (t) <

π2

6

t

1− t
.

In other words,

log p(n) ≤ π2

6

t

1− t
− n log t+ log(1− t).

Now let u = 1−t
t

, then t = 1
1+u

. Then

log p(n) ≤ π2

6

1

u
− n log

1

1 + u
+ log

u

1 + u
=

π2

6

1

u
+ (n− 1) log(1 + u) + log u.

Note that log(1 + u) < u as 1 + u < eu = 1 + u+ u2

2
+ . . . Hence

log p(n) <
π2

6

1

u
+ (n− 1)u+ log u.

Now let us choose u such a way that π2

6
1
u
= (n−1)u as it will be the (almost) optimal

choice, then
u =

π√
6(n− 1)

.

Then we have

log p(n) < 2(n− 1)u+ log u = π

√
2

3
(n− 1) + log

π√
6(n− 1)

.

In other words,
p(n) <

π√
6(n− 1)

eπ
√

2
3
(n−1).
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6.3 Euler’s "pentagonal numbers" theorem

Let us consider the partitions of n into unequal parts, and let pe(n) be the number
of partitions of n into even number of unequal parts, and let po(n) be the number of
partitions of n into even number of unequal parts. The following theorem is due to
Euler.

Theorem 6.3.1. We have

pe(n)− po(n) =

{
(−1)k if n = 3k2±k

2
,

0 otherwise.

Proof. We define two transformations on partitions with unequal parts. They will
be almost bijection between partitions of n into even and odd number of unequal
parts.

Let λ1 > · · · > λm be a partition of n into unequal parts. The dots in the last
row of the Ferrers diagram is called the base. Its size is denoted by b, clearly b = λm.
Let s be the largest integer k for which it is true that

λ1 + 1 = λ2 + 2 = · · · = λk + k.

The number s is the size of the slope of the partition: on the Ferrers diagram,
the slope can be seen as follows: draw a 45◦ line in the direction NE-SW through
the upper-right dot of the Ferrers diagram, then the dots on this line is the slope.
Its size is clearly s.

Now we give the two transformations:

Transformation I: if b ≤ s then delete the base from the Ferrers diagram and add
1− 1 dots to the first b rows, this way we created a new slope. This transformation
results a new partition into unequal parts except if the original slope and base had a
common dot and b = s. In this exceptional case: n = b+(b+1)+· · ·+(2b−1) = 3b2−b

2
,

note that the number of parts in this case is b too.

Transformation II: if b > s then delete the slope from the Ferrers diagram and add a
new base of size s to the Ferrers diagram. This transformation results a new partition
into unequal parts except if the original slope and base had a common dot and b =

s+1. In this exceptional case: n = b+(b+1)+ · · ·+(2b−3)+(2b−2) = 3(b−1)2+(b−1)
2

,
note that the number of parts in this case is b− 1.
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Figure 6.1: Transformation II

Both Transformation I and II change the parity of the number of parts and we
can apply exactly one of them to a non-exceptional partition, and for the resulting
partition we can only apply the other transformation which gives back the original
partition.

Figure 6.2: Exceptional Ferrers-diagrams

This shows that if n ̸= 3k2±k
2

then we get a bijection between partitions of n

into even and odd number of unequal parts, and if n ̸= 3k2±k
2

we will have exactly
one exceptional partition without pair and it has k parts. Hence we proved the
theorem.

Note that we can easily give the generating function of pe(n)− po(n) as follows:

∞∑
n=0

(pe(n)− po(n))x
n =

∞∏
i=1

(1− xi).

Indeed, if we expand the right hand side then a partition of n into k unequal parts will
contribute (−1)k to the coefficient of n. Combining this obseervation with Euler’s
theorem we get the following corollary.

Corollary 6.3.2. We have

∞∏
n=1

(1− xn) = 1 +
∞∑
k=1

(−1)k
(
x(3k2−k)/2 + x(3k2+k)/2

)
.

The corollary of this corollary is a very fast way to compute the sequence (p(n)).

34



Corollary 6.3.3. For n ≥ 1 we have

p(n) =
∞∑
k=1

(−1)k+1

(
p

(
n− 3k2 − k

2

)
+ p

(
n− 3k2 + k

2

))
.

Proof. Recall that
∞∑
n=0

p(n)xn =
∞∏
i=1

1

1− xi
.

Now if we multiply it with

∞∏
n=1

(1− xn) = 1 +
∞∑
k=1

(−1)k
(
x(3k2−k)/2 + x(3k2+k)/2

)
,

and compare the coefficient of n we get that for n ≥ 1 we have

p(n) +
∞∑
k=1

(−1)k
(
p

(
n− 3k2 − k

2

)
+ p

(
n− 3k2 + k

2

))
= 0

which is equivelent with the statement of the corollary.

6.4 Partitions fitting into a rectangle and q-binomial

numbers

Let (n)q = 1 + q + q2 + · · ·+ qn−1, and (n)q! = (n)q(n− 1)q . . . (1)q. Finally, let(
n

k

)
q

=
(n)q!

(k)q!(n− k)q!
.

Note that
(n)q =

qn − 1

q − 1
,

and so (
n

k

)
q

=
(qn − 1) . . . (qn−k+1 − 1)

(qk − 1) . . . (q − 1)
.

It turns out that
(
n
k

)
q

is actually a polynomial in q. This follows from the following
recursion formula.

Theorem 6.4.1. We have(
n

k

)
q

=

(
n− 1

k

)
q

+ qn−k

(
n− 1

k − 1

)
q

.
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Proof. This is a straightforward computation.

Let pi(m,n) be the number of partitions of i with largest part at most n and
at most m parts. So this is the number of partitions of i such that the Ferrers (or
Young) diagram of the partition fits into the m× n rectangle.

Theorem 6.4.2. We have (
n+m

m

)
q

=
mn∑
i=0

pi(m,n)qi.

Proof. Observe that

pi(m,n) = pi(m,n− 1) + pi−n(m− 1, n)

since either the first element of the partition is less than n and then the Young-
tableaux fits into a rectangle of m × (n − 1) or the first element is n, and then the
Young-tableaux of i− n fits into a rectangle of (m− 1)× n.

Note that this recursion is equivalent with

P (m,n) :=
mn∑
i=0

pi(m,n)qi

satisfying the recursion

P (m,n) = P (m,n− 1) + qnP (m− 1, n).

This is the same recursion that is satisfied by
(
n+m
m

)
q
. Since we also have(

n

0

)
q

= 1 = P (n, 0) = P (0, n)

this shows that P (m,n) =
(
n+m
m

)
q
.

It is easy to see that (
n+m

m

)
q

= qmn

(
n+m

m

)
1/q

from the definition. It means that the coefficients are symmetric: pi(m,n) =

pmn−i(m,n). Actually, this can be seen quite easily by deleting a Young-diagram
from an m × n rectangle and then rotating the obtained diagram by 180◦, thus
obtaining a Young diagram of mn− i.
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Theorem 6.4.3. Let q be a prime power and Fq be the field with q elements. Then
the number Nq(n, k) of k-dimensional subspaces of the n-dimensional vector space
Fn
q is

(
n
k

)
q
.

Proof. Let us compute the number of elements of the following sets in two different
ways:

S = {(v1, . . . , vk) | v1, . . . , vk ∈ Fn
q are linearly independent vectors}.

We can choose v1 in qn−1 different ways, because we can choose any vector different
from 0. Then we can choose v2 in qn − q = q(qn−1 − 1) different ways as we can
choose everything except cv1. Having chosen v1, . . . , vt−1 we can choose vt from
Fn
q − ⟨v1, . . . , vt−1⟩ so we can choose vt in qn − qt−1 = qt−1(qn−t+1 − 1) ways. Hence

|S| = qk(k−1)/2(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1).

On the other hand, we can first choose the k-dimensional subspace V induced by
v1, . . . , vk in Nq(n, k) ways and then inside V we can choose v1, . . . , vk in

qk(k−1)/2(qk − 1)(qk−1 − 1) . . . (q − 1)

ways. Hence

|S| = Nq(n, k)q
k(k−1)/2(qk − 1)(qk−1 − 1) . . . (q − 1).

Hence we get that

Nq(n, k) =

(
n

k

)
q

.

Beyond this course 6.4.4. There is a natural partially ordered set on the Young-
tableauxs fitting into the box n×m by containment. This poset is very reminiscent
to the Boolean poset. This is not a coincidence, it can be derived from the the
Boolean lattice Bnm by factoring out with the group Sn ≀ Sm, the wreath product of
the symmetric groups Sn and Sm. In particular, this is a Sperner poset: the largest
antichain is the middle level. We can decompose the poset to chains by proving that
there is always a matching between two consecutive levels that covers the smaller
level. In particular,

p0(n,m) ≤ p1(n,m) ≤ · · · ≤ p⌈nm/2⌉(n,m) ≥ · · · ≥ pnm(n,m).

A sequence is called unimodal if it is increasing for a while and then it is decreasing.
In general, it can be quite hard to prove that a certain combinatorial sequence is
unimodal.
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6.5 Hook length formula

Let λ = (λ1, . . . , λm) be a partition of n. Assume that we write the numbers
1, 2, . . . , n into the boxes of the Young-tableaux such that in each row and column
the number are monotone increasing from left to right and from top to bottom, and
each number appears exactly once. Such a configuration is called standard Young-
tableaux.

4 7

13

8

5 12

61

3

11102

9

Figure 6.3: A standard Young-tableaux

The goal of this section is to count the number of standard Young-tableauxs
belonging to a given partition λ. The hook length formula of Frame, Robinson
and Thrall gives a very elegant formula to determine the number of these standard
Young-tableauxs.

For a cell (i, j) of the Young-tableaux let H(i,j) be the set of those cells which
are below (i, j) or are left to (i, j) (but not below and left!) including the cell (i, j)
itself. Let hij = |H(i,j)|. For instance, the cell (2, 2) containing the number 5 has
hook length 4, the cell (1, 1) containing the number 1 has hook length 9.

Theorem 6.5.1 (Frame, Robinson, Thrall). Let fλ be the number of standard
Young-tableauxs with shape λ. Then

fλ =
n!∏
i,j hi,j

.

Proof. First of all, it will be a bit more convenient to work with the following formula:

g(λ1, . . . , λm) =
(
∑m

i=1 λi)!
∏

i<j((λi − i)− (λj − j))∏m
i=1(λi +m− i)!

.

We will show later that
g(λ1, . . . , λm) =

n!∏
i,j hi,j

.
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Instead of fλ, let us write f(λ1, . . . , λm). The main idea of the proof is to show
that f and g satisfy the same recursion formula with the same boundary conditions
which uniquely determine the function f or g, that is, f = g. We will show that
both f and g satisfy the recursion formula

f(λ1, . . . , λm) = f(λ1−1, λ2, . . . , λm)+f(λ1, λ2−1, . . . , λm)+· · ·+f(λ1, λ2 . . . , λm−1),

and

g(λ1, . . . , λm) = g(λ1−1, λ2, . . . , λm)+g(λ1, λ2−1, . . . , λm)+· · ·+g(λ1, λ2 . . . , λm−1).

Now we have to stop for a moment, it is clear what g(λ1, λ2 . . . , λk−1, . . . , λm) means
even if (λ1, λ2 . . . , λk − 1, . . . , λm) is not a partition, but what does the expression
f(λ1, λ2 . . . , λk − 1, . . . , λm) mean if (λ1, λ2 . . . , λk − 1, . . . , λm) is not a partition?
The trick is that we simply define it as 0 and we will consider it as a boundary
condition. Let us call a sequence (λ1, λ2 . . . , λk − 1, . . . , λm) an almost partition if
(λ1, λ2 . . . , λk, . . . , λm) is a partition, but (λ1, λ2 . . . , λk−1, . . . , λm) is not a partition.
Clearly, we get an almost partition when λk = λk+1, but λk−1 ̸≥ λk+1. This way we
immediately recognise an almost partition: we only have to find the unique element
which is 1 less then the next one. Now we are ready to give the boundary conditions:

• f((n)) = 1.

• f(λ1, . . . , λm−1, 0) = f(λ1, . . . , λm−1).

• f(λ′
1, . . . , λ

′
m) = 0 whenever (λ′

1, . . . , λ
′
m) is an almost partition.

Now we can see that f satisfies the recursion formula with this carefully chosen
boundary conditions: we can only write the number n to some end of a row, say
k-th row. If deleting this box from the Young-tableaux would result an almost
partition then it means that we shouldn’t have written n in this box, but this is
not a problem since f(λ1, λ2 . . . , λk − 1, . . . , λm) is 0 anyway by definition. It is also
clear that f satisfies the first two boundary conditions. It is also obvious that the
recursion formula together with the three boundary conditions completely determine
the function f . All we need to show that g also satisfies the recursion formula together
with the three boundary conditions.

First, g((n)) = n!·1
n!

= 1. Secondly, if λm = 0 then

g(λ1, . . . , λm−1, 0) =
(
∑m

i=1 λi)!
∏

i<j((λi − i)− (λj − j))∏m
i=1(λi +m− i)!

=
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=
(
∑m

i=1 λi)!
∏

i<j≤m−1((λi − i)− (λj − j)) ·
∏m−1

i=1 ((λi − i)− (λm −m))∏m−1
i=1 (λi +m− 1− i)!

∏m−1
i=1 (λi +m− i) · (λm +m−m)!

=

=
(
∑m−1

i=1 λi)!
∏

i<j≤m−1((λi − i)− (λj − j))∏m−1
i=1 (λi +m− 1− i)!

= g(λ1, . . . , λm−1)

since (λi − i) − (λm −m) = λi +m − i and λm! = 1 if λm = 0. Next we show that
g(λ′

1, . . . , λ
′
m) = 0 whenever (λ′

1, . . . , λ
′
m) is an almost partition. Since (λ′

1, . . . , λ
′
m)

is an almost partition, there exists a k such that λ′
k = λ′

k+1 − 1. Then (λ′
k − k) −

(λ′
k+1−k−1) = 0, but this term appears in the enumerator of the function g. Hence

g(λ′
1, . . . , λ

′
m) = 0. So far we proved that g satisfies the same boundary conditions

as f . Next we show that g satisfies the same recursion formula too. Clearly,

g(λ1, . . . , λm) = g(λ1−1, λ2, . . . , λm)+g(λ1, λ2−1, . . . , λm)+· · ·+g(λ1, λ2 . . . , λm−1).

is equivalent with

1 =
m∑
k=1

g(λ1, . . . , λk − 1, . . . , λm)

g(λ1, . . . , λk, . . . , λm)
.

We have
g(λ1, . . . , λk − 1, . . . , λm)

g(λ1, . . . , λk, . . . , λm)
=

(
∑m

i=1 λ
′
i)!

∏
i<j((λ

′
i−i)−(λ′

j−j))∏m
i=1(λ

′
i+m−i)!

(
∑m

i=1 λi)!
∏

i<j((λi−i)−(λj−j))∏m
i=1(λi+m−i)!

,

where λ′
i = λi if i ̸= k and λ′

k = λk − 1. Comparing the two products we get that

g(λ1, . . . , λk − 1, . . . , λm)

g(λ1, . . . , λk, . . . , λm)
=

=
λk +m− k

n

∏
i<k

(λi − i)− (λk − 1− k)

(λi − i)− (λk − k)

∏
j>k

(λk − 1− k)− (λj − j)

(λk − k)− (λj − j)

Now if we introduce the notation zj = λj +m− j for all j, then for i < k we have

(λi − i)− (λk − 1− k)

(λi − i)− (λk − k)
=

1 + zi − zk
zi − zk

= 1 +
1

zi − zk
,

while for j > k we have

(λk − 1− k)− (λj − j)

(λk − k)− (λj − j)
=

zk − 1− zj
zk − zj

=
1 + zj − zk
zj − zk

= 1 +
1

zj − zk
.

Finally, n =
∑

λi =
∑

zi − m(m−1)
2

. Hence

g(λ1, . . . , λk − 1, . . . , λm)

g(λ1, . . . , λk, . . . , λm)
=

zk∑m
i=1 zi −

m(m−1)
2

∏
j ̸=k

(
1 +

1

zj − zk

)
.
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So the claim

1 =
m∑
k=1

g(λ1, . . . , λk − 1, . . . , λm)

g(λ1, . . . , λk, . . . , λm)

equivalent with
m∑
i=1

zi −
m(m− 1)

2
=

m∑
k=1

zk
∏
j ̸=k

(
1 +

1

zj − zk

)
.

To prove this identity, let us recall that if z1, . . . , zm are different numbers and
f1, . . . , fm are given numbers then there is a polynomial p(x) of degree at most
m − 1 such that p(zi) = fi for i = 1, . . . ,m. Note that this polynomial is unique:
if p(zi) = q(zi) = fi for i = 1, . . . ,m and both p(x) and q(x) have degree at most
m− 1, then the polynomial p− q has degree at most m− 1 too and it has m zeros
hence p− q ≡ 0. Lagrange’s interpolation gives the polynomial p:

p(x) =
m∑
i=1

fi

∏
j ̸=i(x− zj)∏
j ̸=i(zi − zj)

.

If m ≥ 3 and fi = zi, then

p(x) =
m∑
i=1

zi

∏
j ̸=i(x− zj)∏
j ̸=i(zi − zj)

.

On the other hand, the polynomial q(x) = x is clearly satisfies that q(zi) = zi and it
has degree at most m− 1. Hence

x =
m∑
i=1

zi

∏
j ̸=i(x− zj)∏
j ̸=i(zi − zj)

.

By comparing the coefficient of xm−1 on the two sides we get that

0 =
m∑
i=1

zi
∏
j ̸=i

1

zi − zj
.

By multiplying by (−1)m−1 we get that

0 =
m∑
i=1

zi
∏
j ̸=i

1

zj − zi
.

Now if we expand the products in
m∑
k=1

zk
∏
j ̸=k

(
1 +

1

zj − zk

)
,
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we immediately get the terms
∑m

k=1 zk by choosing 1 from each term of the products.
If we choose exactly one non-1 term from each product we get∑

i,j

(
zi

1

zj − zi
+ zj

1

zi − zj

)
=
∑
i,j

(−1) = −m(m− 1)

2
.

Finally, if choose more than one non-1 term from each product then we simply collect
those terms together which contain the same zi1 , zi2 , . . . , zit and apply the identity

0 =
t∑

j=1

zij
∏
v ̸=j

1

ziv − zij

by observing that t ≥ 3 in this case. Hence

m∑
i=1

zi −
m(m− 1)

2
=

m∑
k=1

zk
∏
j ̸=k

(
1 +

1

zj − zk

)
indeed true.

So far we have proved that

f(λ1, . . . , λm) =
(
∑m

i=1 λi)!
∏

i<j((λi − i)− (λj − j))∏m
i=1(λi +m− i)!

.

Now we will show that
f(λ1, . . . , λm) =

n!∏
i,j hi,j

.

We only need to observe that∏
j

hk,j =
(λk +m− k)!∏

k<j((λk − k)− (λj − j))
.

This is indeed true: let us start to write the hook lengths from right to left:

1 · 2 · . . . · (λk − λk+1)·

(λk − λk+1 + 2) · . . . · (λk − λk+2 + 1)·

(λk − λk+2 + 3) · . . . · (λk − λk+3 + 2)·

. . .

(λk − λm +m− k + 1) . . . · (λk +m− k).
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Note that the missing numbers in this product are λk−λk+j + j = (λk−k)− (λk+j −
(k + j)). Hence indeed we have∏

j

hk,j =
(λk +m− k)!∏

k<j((λk − k)− (λj − j))
.

This completes the proof of the hook length formula.

Remark 6.5.2. Recall that the number of sequences (s1, s2, . . . , s2n) satisfying the
conditions si = ±1,

∑m
i=1 si ≥ 0 for all 1 ≤ m ≤ 2n and

∑2n
i=1 si = 0 is counted by

the Catalan-number Cn =
(2nn )
n+1

. Now we can give a simple proof for it.
Consider the 2×n Young-tableax. Note that by the hook length formula we have

fn,n =
(2n)!

(n+ 1)!n!
=

(
2n
n

)
n+ 1

.

On the other hand, the standard Young-tableauxs with this shape are in one-to-one
bijection with the above sequences: let si = 1 if i is in the first row and si = −1 if i
is in the second row. It is easy to check that this is indeed a bijection (check it!).

Beyond this course 6.5.3. The numbers fλ play an extremely important role
in the representation theory of symmetric groups: they are the dimensions of the
irreducible representations. This in particular implies that∑

λ⊢n

(fλ)2 = n!.

There is a combinatorial proof of this fact. Indeed, there is a combinatorial bijection
between pairs of standard Young-tableauxs of the same shape and the permutations
on n elements.
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7. Extremal Graph Theory

7.1 Introduction

In this chapter all graphs are simple and finite. If G = (V,E) is graph then v(G) =

|V (G)| and e(G) = |E(G)| denotes the number of vertices and edges, respectively.
The notation H ⊂ G means that H is a (not necessarily induced) subgraph of G.
Furthermore, Cn will denote the cycle of length n. The goal of this chapter is to
prove the following classical theorem of Bondy and Simonovits.

Theorem 7.1.1 (Bondy–Simonovits [3]). For all k ≥ 2 there exist constants ck and
n0(k) such that for all graph Gn with n ≥ n0(k) vertices and e(Gn) ≥ ckn

1+1/k edges
the graph Gn contains a cycle C2k.

This chapter follows the treatment of the original paper of Bondy and Simonovits
[3]. Practically the same proof can be found in the book Extremal graph theory by
Béla Bollobás [2]. This book is still a standard reference on this area despite the fact
that some parts are superseded by now1.

This chapter is organized as follows. In the next section we recall the case of C4.
Furthermore, we show a similar, but simpler result that contains the main idea of
the Bondy–Simonovits theorem. This way we will be able to separate the main idea
from the technical difficulties. In the third part we will prove the Bondy–Simonovits
theorem. In fact, we will prove a stronger statement than what we stated.

7.2 Retrospection and the main idea of the proof

First, we study the case of C4. You might have learned it in your first year, but
it is worth a new look. The proof of this theorem is different from the proof of

1This is not a big surprise, the book was written in 1978, so for instance it does not contain the
regularity lemma at all, a cornerstone of the modern extremal graph theory
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Theorem 7.1.1, but its main idea is also very important, and is based on the technique
cherry-counting.

Theorem 7.2.1. Let Gn be a graph on n vertices that does not contain a C4. Then

e(Gn) ≤
n3/2

2
+

n

4
.

Proof. Let d1, d2, . . . , dn be the degree sequence of the graph Gn. Then

2e(Gn) =
n∑

k=1

dk.

Let us count the number of paths of length 2 (i. e., it is the path on 3 vertices, more
popularly known as cherry) in the graph G. Let ch be the number of cherries. If
the middle vertex of the cherry is the k.th vertex then we can choose the other two
vertices in

(
dk
2

)
ways. Hence

ch =
n∑

k=1

(
dk
2

)
.

The crucial observation is that every vertex pair can be the end points of at most
one cherry, otherwise two cherries with the same endpoints determine a C4. So there
are at most

(
n
2

)
cherries. Hence(

n

2

)
≥ ch =

n∑
k=1

(
dk
2

)
.

Next we introduce a useful lower bound for the number of cherries from the exact
formula.

ch =
n∑

k=1

(
dk
2

)
=

1

2

n∑
k=1

d2k −
1

2

n∑
k=1

dk =
1

2

n∑
k=1

d2k − e(Gn) ≥

≥ 1

2n

(
n∑

k=1

dk

)2

− e(Gn) =
(2e(Gn))

2

2n
− e(Gn) =

2e(Gn)
2

n
− e(Gn).

Whence (
n

2

)
≥ 2e(Gn)

2

n
− e(Gn).

This means that e(Gn) is at most the largest root of the quadratic equation

2

n
x2 − x− n(n− 1)

2
= 0.
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Hence

e(Gn) ≤ x1 =
1 +

√
1 + 4 2

n
n(n−1)

2

2 2
n

=

=
n

4

(
1 +

√
4n− 3

)
≤ n

4

(
1 +

√
4n
)
=

n3/2

2
+

n

4
.

This finishes the proof of the theorem.

The proof of the next theorem is the same as the main idea of the proof of
Theorem 7.1.1.

Theorem 7.2.2. Let Gn be a graph on n vertices without no cycle of length at most
2k. Then

e(Gn) ≤ n1+1/k + n.

Proof. Let d be the smallest degree of the graph G, and let x be a vertex of degree
d. Let us build a breadth first search tree from the vertex x. (It is not necessarily a
spanning tree as G might not be connected.) Let Vj be the set of vertices of distance
j from x. Suppose that j ≤ k − 1. Then we claim that if u, v ∈ Vj then they are
not adjacent and they don’t have a common neighbor in Vj+1. Indeed, if they were
adjacent there would be a cycle of length at most 2j + 1 < 2k in G determined by
the spanning tree and the edge (u, v), and if they have a common neighbor in Vj+1

then there would be a cycle of length at most 2(j+1) ≤ 2k in G. Hence every vertex
in Vj has at least d− 1 neighbors in Vj+1, and for different u, v ∈ Vj their neighbors
are different. This means that |Vj+1| ≥ (d− 1)|Vj| if j ≤ k − 1. This implies that

n ≥ |Vk| ≥ (d− 1)|Vk−1| ≥ (d− 1)2|Vk−2| ≥ · · · ≥ (d− 1)k.

Whence d ≤ n1/k + 1. Now delete vertex x and let us repeat the argument for the
graph on n − 1 vertices. This graph does not contain a cycle of length at most 2k

either, so the smallest degree is at most (n − 1)1/k + 1. We can repeat this process
till we get the empty graph. Then we obtain that

e(Gn) ≤ (n1/k + 1) + ((n− 1)1/k + 1) + · · ·+ (11/k + 1) ≤ n · n1/k + n.

Hence e(Gn) ≤ n1+1/k + n.
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7.3 General extremal graph theoretic lemmas

In this section we offer a collection of simple observations that comes in handy many
times, and we use them in the proof of the Bondy-Simonovits theorem too.

Lemma 7.3.1. Let G be a graph with e(G) edges. Then there exists a bipartite
subgraph H of G such that dH(x) ≥ 1

2
dG(x) for all x ∈ V (G). In particular, e(H) ≥

1
2
e(G).

Proof. For a set A ⊆ V (G) let e(A, V \A) denote the number of edges going between
the sets A and V \ A. Let X be a set that maximizes e(X, V \ X). Let H be the
bipartite graph determined by X and V \X. We claim that dH(x) ≥ 1

2
dG(x) for all

x ∈ V (G). Indeed, if there were a v ∈ V violating the inequality then by putting v

to the other class the number of edges between the two classes would increase with
(dG(v)− dH(v))− dH(v) = dG(v)− 2dH(v) edges. This would contradict the choice
of X. This finishes the proof of the lemma.

Remark 7.3.2. Lemma 7.3.1 is used as follows. Suppose that we wish to prove
that if G has no forbidden subgraph K then it has at most O(f(n)) edges. If we can
prove this statement for bipartite graphs then we can prove it for all graphs using the
lemma only losing a factor 2. Since these sorts of lemmas can be useful we mention
two more lemmas of this type without proof.

Lemma 7.3.3. Let G be a graph with e(G) edges. Then there exists a bipartite
subgraph H = (A,B,E ′) of G such that ||A| − |B|| ≤ 1 and e(H) ≥ 1

2
e(G).

Remark 7.3.4. So we can require that the two classes of the bipartite graph is
(almost) the same size. Unfortunately, we cannot require that at the same time the
inequality dH(x) ≥ 1

2
dG(x) holds true for all vertex x. The lemma can be proved by

the first moment method.
Sometimes it can be useful that the degrees are not only bounded below, but also

bounded above. The next lemma is an example for such a statement.

Lemma 7.3.5. Let G be a d–regular graph. Then there exists a bipartite subgraph
H = (A,B,E ′) for which ∣∣∣∣dH(x)− d

2

∣∣∣∣ ≤ 10
√

d log d

for all x ∈ V (G).
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Remark 7.3.6. The main idea of the proof is: LLL, i. e., Lovász local lemma.

⋆ ⋆ ⋆

Next we prove another very useful and very simple statement.

Lemma 7.3.7 (Minimum degree-average degree principle). Let P be a property for
which the following is satisfied: if H has the property P then so all graphs G that
contains H as an induced subgraph. (Example: let P (K) be the property that H

contains K.) Assume that if a graph H on at most n vertices has minimum degree
r = r(n) then it has property P . Suppose that the graph G does not satisfy property
P , then it has at most (r− 1)n edges, and consequently the average degree is at most
2r.

Proof. Since G does not satisfy property P , it has a degree at most r − 1. After
deleting this vertex, the new graph again contains a vertex of degree at most r − 1.
By continuing this argument we get that G has at most (r − 1)n edges. Since the
number of edges is less than rn, the average degree is less than 2r.

Remark 7.3.8. Example: if the minimum degree of a graph G is at least 3 then it
contains a cycle of even length (why?). Whence if a graph on n vertices does not
contain a cycle of even length then it has at most 2n edges.

Another way to rephrase Lemma 7.3.7 is that if we wish to prove that a certain
graph has at most rn edges, then it is enough to prove that with minimal degree r

the graph would have property P .

7.4 Proof of Theorem 7.1.1

In this section we prove the Bondy–Simonovits theorem. As we already mentioned
we will prove a slightly stronger statement.

Theorem 7.4.1. Let Gn be a graph on n vertices. If e(Gn) > 100kn1+1/k then
C2ℓ ⊆ Gn for all ℓ ∈ [k, kn1/k].

In fact, it will be more convenient to prove the following statement.

Theorem 7.4.2. Let E = e(Gn). Then C2ℓ ⊆ Gn for all ℓ ≥ 2 satisfying the
inequalities ℓ ≤ E

100n
and ℓn1/ℓ ≤ E

10n
.
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It is easy to see that Theorem 7.4.2 implies Theorem 7.4.1 which in turn implies
Theorem 7.1.1.

⋆ ⋆ ⋆

First we prove a rather strange lemma that, at least for the first sight, has nothing
to do with the theorem. Later this lemma will come in handy. We need the following
definition.

Definition 7.4.3. A (not necessarily proper) coloring of the vertices of a graph G

is t-periodic if arbitrary path of length t in G has end points of the same color. (A
path has length t if it has t edge.)

Lemma 7.4.4. Let t be a positive integer. Let G be a connected graph with e(G)

edges, v(G) vertices such that e(G) ≥ 2tv(G). Then any t-periodic coloring of G has
at most 2 colors.

Proof. First we show that if e(G) ≥ 2tv(G), then G contains two adjacent vertices
that are connected by two paths of length at least t. By Lemma 7.3.7 (minimum
degree average degree principle) it is enough to show this claim where the minimum
degree is at least 2t. So assume that the minimum degree is at least 2t in the graph
G.

x x x x xi i i i
21 t 2t

Let P = x1x2 . . . xk be a longest path of the graph G. Since P is a longest
path all neighbors of x1 should be on the path otherwise one can extend P with a
new vertex. Let the neighbors of x1 be xi1 = x2, xi2 , . . . , xir , where r ≥ 2t. Let us
consider the vertices x1 and xit . They are adjacent and the paths P1 = x1x2 . . . xit

and P2 = xitxit+1 . . . xi2tx1 are of length at least t. In what follows we call this special
subgraph a Θ-graph.

Since the coloring of G is t-periodic the coloring of this Θ-
subgraph is also t-periodic. Let us consider this t-periodic col-
oring. Let C1, C2, C3 be the three cycles of the Θ-subgraph, and
let ℓ1, ℓ2, ℓ3 be their lengths. Furthermore, let ti be the smallest
period with which the cycle Ci is periodic.
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It is easy to see that the period should be the same on the three cycles (why?), so
t1 = t2 = t3. Moreover, ti | ℓi. If C3 is the longest cycle, then ℓ1+ ℓ2− ℓ3 = 2, and so
ti = t∗ | 2, i. e. t∗ = 1 or 2. Hence we can use at most 2 colors on the Θ-subgraph.

Since G is connected, for arbitrary vertex v there exists a path connecting it with
the Θ-subgraph. Suppose that it is of length ta+ b, where b < t. Then making t− b

steps on the Θ-subgraph we can reach a vertex of this subgraph that is connected to
v by a path of length divisible by t. Hence their colors must be the same implying
that the whole graph is colored with at most 2 colors.

The next lemma can be considered as the main step of the proof as Theorem 7.4.2
will easily follow from it.

Lemma 7.4.5. Let G be a bipartite graph on n vertices with minimum degree at
least s = max(5ℓn1/ℓ, 50ℓ). Then C2ℓ ⊆ G.

Proof. Let x be an arbitrary vertex of the graph G, and let Vi be the vertices of
distance i from x. Since G is bipartite all Vi induces an independent set.

Suppose for contradiction that G does not contain a cycle C2ℓ. We will show that
for all 1 ≤ i ≤ ℓ we have

|Vi|
|Vi−1|

≥ s

5ℓ
. (7.1)

This will immediately lead to a contradiction as s ≥ 5ℓn1/ℓ implies that |Vi| ≥
n1/ℓ|Vi−1|, and so |Vℓ| ≥ n, but the whole graph has n vertices.

We will prove the statement 7.1 by induction on i. The case i = 1 is trivial since
deg(x) ≥ s ≥ s

5ℓ
. Suppose that we already proved the claim for i− 1.

V

V

x

V1

2

i−1

V
i

H1

W1

.

.

.

Let H = G[Vi−1 ∪ Vi] be the subgraph induced by the set
Vi−1 ∪ Vi. Let H1, . . . , Hq be the connected components
of H. Finally set Wj = Hj ∩ Vi−1. We will call a path
y1y2 . . . yr monotone if the distance of yi from x is strictly
monotone increasing or decreasing. (In other words, a
monotone path has at most one common vertex with each
set Vi.)

First we show that e(H1) < 4ℓv(H1). This is trivial if |W1| = 1, because then
for the degree d of this one vertex we have the inequality d < 4ℓ(d + 1), and this is
trivially satisfied. So let us suppose that W1 has at least 2 vertices.
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Let a ∈ Vp be a vertex satisfying the following conditions:
(i) there exist two monotone paths P1 and P2 from vertex a to W1 whose only
intersection is the vertex a,
(ii) p is minimal with respect to condition (i).

a

y

P

z

1P3

Vi−1

Vp

First we show that all vertices of W1 is connected with
vertex a by a monotone path. Let y ∈ W1 and P3 be
a monotone path connecting x and y. Because of the
minimality of p, the path P3 has to intersect P1 at some
point z, and then we get a monotone path between a and
y: aP1zP3y.

Next we associate colors red and blue to the vertices of W1 in such a way that
if two vertices, say u and v, have different colors then, there exist monotone paths
from a to u and v whose only intersection is the vertex a.

u v

P2z

z
P

P
u

v

1

2

a

Vi−1

Vp

We can do it as follows. If for a vertex u there exists
a monotone path from u to a that is disjoint from P2

(apart from vertex a), then let us color the vertex u to
red, otherwise let us color it to blue. We will show that
this coloring satisfies the above condition.

Suppose that the color of u is red, and the color of v is blue. Then there exists
a monotone path Pu between u and a such that P2 is disjoint from Pu. Let Pv be
any monotone path between v and a. Since v is blue Pv has to intersect P2 in a
vertex different from a. Let the last such intersection point (counted on Pv) be z1.
Suppose that Pu and Pv are not disjoint: they have an intersection, let z2 be the last
intersection again counted on Pv. Now we have to distinguish two cases according
to the order of z1 or z2 on Pv. If z2 is closer to v then vPvz2Pua is a path between
v and a disjoint from P2, so the color of v should have been red. If z1 is closer to v

on Pv then the path vPvz1P2a is a monotone path between v and a that is disjoint
from Pu. Hence this coloring is indeed good.

51



V

V

H1

Vi

i−1

pa

Next let us color the vertices of H1 ∩ Vi to green. We
claim that this blue-red-green coloring of H1 is a t-periodic
coloring with t = 2(ℓ−i+p+1). Suppose for contradiction
that this is not true. Since H1 is a bipartite graph this can
only occur if there is a red u ∈ W1 and a blue v ∈ W1 that
are connected by a path Q of length 2(ℓ−i+p+1). Since u
and v have different colors there are disjoint paths Pu and
Pv from u and v to the vertex a. Then the paths Q,Pu, Pv

form a cycle of length 2(ℓ− i+ p+1)+ 2(i− 1− p) = 2ℓ,
a contradiction. So this coloring is indeed t-periodic.

Now we can use our strange Lemma 7.4.4:

e(H1) ≤ 2tv(H1) < 4ℓv(H1).

Similarly we get for the connected components H2, . . . , Hq that e(Hi) ≤ 4ℓv(Hi)

(i = 1, . . . , q). Hence e(H) < 4ℓv(H).

Let H∗ = G[Vi−2 ∪ Vi−1]. Similarly to the previous case we get that e(H∗) <

4ℓv(H∗). By the induction we get that

|Vi−1|
|Vi−2|

≥ s

5ℓ
. (7.2)

On the other hand,
e(H) + e(H∗) ≥ s|Vi−1|

since the minimum degree is at least s. Whence

4ℓ(|Vi−1|+ |Vi|+ |Vi−2|+ |Vi−1|) = 4ℓ(v(H) + v(H∗)) > e(H) + e(H∗) ≥ s|Vi−1|.

Thus
|Vi| ≥

1

4ℓ
((s− 8ℓ)|Vi−1| − 4ℓ|Vi−2|).

Now let us use inequality 7.2:

|Vi| ≥
1

4ℓ

(
(s− 8ℓ)− 20ℓ2

s

)
|Vi−1|.

Since s ≥ 50ℓ we have

|Vi|
|Vi−1|

≥ 1

4ℓ
(s− 9ℓ) >

1

4ℓ

4s

5
=

s

5ℓ
.

This proves the claim of the lemma.
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Now we are ready to prove Theorem 7.4.2. For the sake of convenience we repeat
the statement.

Theorem 7.4.2 Let E = e(Gn). Then C2ℓ ⊆ Gn for all ℓ ≥ 2 satisfying the
inequalities ℓ ≤ E

100n
and ℓn1/ℓ ≤ E

10n
.

Proof. We prove the statement by induction on n. For n = 1 the conditions cannot
be satisfied, so the claim is trivially true.

Let us use Lemma 7.3.1: there exists a bipartite subgraph Hn ⊆ Gn such that
e(Hn) ≥ e(Gn)/2 and all degrees in H are at least the half of the corresponding
degree in G. If all degree in Hn is at least E

2n
, then

max(5ℓn1/ℓ, 50ℓ) ≤ E

2n

implies that C2ℓ ⊆ Hn according to Lemma 7.4.5. Hence C2ℓ ⊆ Gn.
If there exists a vertex w ∈ V (Hn) whose degree in Hn is smaller than E

2n
then

the degree of this vertex in Gn is smaller than E
n
. Let Gn−1 = Gn−w. We will show

that Gn−1 satisfies the two hypotheses of the induction:

ℓ ≤ e(Gn−1)

100(n− 1)
and ℓ(n− 1)1/ℓ ≤ e(Gn−1)

10(n− 1)
.

Then C2ℓ ⊆ Gn−1 and of course, C2ℓ ⊆ Gn. Next we show that the hypotheses of the
induction are indeed satisfied. Since ℓ ≤ e(Gn)

100n
thus

ℓ ≤ e(Gn)

100n
=

e(Gn)− e(Gn)
n

100(n− 1)
≤ e(Gn−1)

100(n− 1)
.

(Since the degree of w is smaller than e(Gn)/n.) On the other hand, because of
ℓn1/ℓ ≤ e(Gn)

10n
we have

ℓ(n− 1)1/ℓ ≤ ℓn1/ℓ ≤ e(Gn)

10n
=

e(Gn)− e(Gn)
n

10(n− 1)
≤ e(Gn−1)

10(n− 1)
.

This proves that the hypotheses of the induction are satisfied. This proves the
theorem.
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7.5 Construction for graphs without cycles of fixed

length

In this section we show that for k = 2, 3, 5 the Bondy–Simonovits theorem is tight
up to constant.

Theorem 7.5.1. For the values k = 2, 3, 5 and for a prime power q there exists a
graph Gn on n = 2qk with at least qk+1 edges that does not contain a cycle C2k.

Proof. (Wenger, Conlon) Let us consider the following bipartite graph G = (P,L,E)

that we will call Dk(q). Let P = {x ∈ Fk
q}. For u ∈ Fk−1

q and z ∈ Fq let us consider
the line

ℓu,z = {(0, u) + y(1, z, z2, . . . , zk−1) | y ∈ Fq}.

Let L = {ℓu,z | u ∈ Fk−1
q , z ∈ Fq}. Finally, let E = {(p, ℓ) | p ∈ ℓ}. Clearly,

|P | = |L| = qk and |E| = qk+1.
We call two lines ℓu1,z1

and ℓu2,z2
parallel if z1 = z2 but u1 ̸= u2. Observe that

parallel lines have no intersection since if we know p = (0, u) + y(1, z, . . . , zk−1) and
z, then we immediately know y from the first coordinate, and then this determine u.

Let us consider a cycle of length 2t in the graph G, let it be p1ℓ1p2ℓ2 . . . ptℓt(p1).
First of all, observe that ℓi and ℓi+1 cannot be parallel, because parallel lines have
no intersection.

On the other hand, we claim that for any ℓi there is an ℓj parallel with it. The
reason is the following: let ℓi = ℓui,zi

, then since pi+1, pi ∈ ℓi we have

pi+1 − pi =((0, ui) + yi(1, zi, z
2
i , . . . , z

k−1
i ))− ((0, ui) + yi+1(1, zi, z

2
i , . . . , z

k−1
i ))

=(yi+1 − yi)(1, zi, z
2
i , . . . , z

k−1
i ).

Let ai = yi+1 − yi ̸= 0, then with the notation pk+1 = p1 we have

0 =
k∑

i=1

(pi+1 − pi) =
k∑

i=1

ai(1, zi, z
2
i , . . . , z

k−1
i ).

For different z1, . . . , zr where r ≤ k the vectors (1, zi, z
2
i , . . . , z

k−1
i ) are linearly inde-

pendent, so the above sum can only be 0 if for each i there are some j1, . . . , js such
that zi = zj1 = · · · = zjs and ai + aj1 + · · · + ajs = 0. This means that for each ℓi

there is at least one other line that is parallel with it.
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In case of k = 2 and k = 3 we are immediately done since it cannot occur that
in ℓ1ℓ2(ℓ1) or ℓ1ℓ2ℓ3(ℓ1) we have no two neighboring indices with parallel lines, but
for each line we have another line that is parallel with it. For k = 5 this is also a
contradiction, because the parallel classes would give a proper coloring of the five
cycle ℓ1ℓ2ℓ3ℓ4ℓ5(ℓ1) without a singleton class, but there is no such coloring since you
cannot color a C5 with two colors, but with more than two colors there will be a
singleton class.

Hence Dk(q) does not contain a cycle of length 2k. (It is also true that D3(q)

does not contain a cycle of length 4, and D5(q) does not contain a cycle of length 4

or 6.)
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8. Schwartz–Zippel Lemma

8.1 Introduction

In this chapter we prove the so-called Schwartz–Zippel lemma and see a typical
application of it.

Theorem 8.1.1 (Schwartz–Zippel). Let F be an arbitrary field. Let S be a finite
subset of F. Suppose that p(x1, . . . , xm) is a polynomial of degree d with coefficients
from F. Then the number of (s1, . . . , sm) ∈ Sm with p(s1, . . . , sm) = 0 is at most
d|S|m−1. In other words, if we choose s1, . . . , sm ∈ S independently and uniformly
at random, then the probability that p(s1, . . . , sm) = 0 is at most d

|S| .

Proof. We prove the claim by induction on m. For m = 1 the statement claims
that a univariate degree d polynomial has at most d zeros, this is well-known. Now
suppose that m > 1. Let us write p(x1, . . . , xm) in the following form:

p(x1, . . . , xm) =
k∑

j=0

pj(x1, . . . , xm−1)x
j
m,

where k = degxm
p. Note that deg pk(x1, . . . , xm−1) = d− k. Let

S0 = {(s1, . . . , sm−1) | si ∈ S, pk(s1, . . . , sm−1) = 0},

and
S1 = {(s1, . . . , sm−1) | si ∈ S, pk(s1, . . . , sm−1) ̸= 0},

By induction on m we have |S0| ≤ (d − k)|S|m−2. If (s1, . . . , sm−1) ∈ S1, then the
polynomial

p(s1, . . . , sm−1, xm) =
k∑

j=0

pj(s1, . . . , sm−1)x
j
m,
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has at most k solutions. Hence the number of solutions of p(s1, . . . , sm) = 0 with
s1, . . . , sm ∈ S is at most |S0| · |S|+ |S1|k ≤ (d−k)|S|m−2 · |S|+ |S|m−1 ·k = d|S|m−1.
We are done.

8.2 Perfect matchings in bipartite graphs

In this section we show how one can use the Schwartz-Zippel lemma to decide whether
a bipartite graph contains a perfect matching. Suppose that G = (A,B,E) is a
bipartite graph such that |A| = |B| = n. For sake of simplicity we assume that the
elements of A and B are labelled by the elements of {1, 2, . . . , n}. Let us introduce
the matrix R of size n × n as follows: Rij = xij if i ∈ A and j ∈ B are adjacent,
and Rij = 0 if they are not adjacent. Here xij is just a variable. Note that if
G does not contain a perfect matching, then det(S) = 0. If it contains a perfect
matching, say M , then nothing cancels the term (−1)s

∏
(i,j)∈M xij in the expansion

of det(S). In this case det(S) is a multivariate polynomial of degree n. Note that we
cannot use Gauss elimination to a matrix containing variables (why?), but we can
do the following: we randomly substitute elements of S into xij and check whether
the determinant is non-zero or not. If det(R) ̸= 0, then the probability that after
the evaluation the result is 0 is at most n

|S| . So choose a set S of size 4n and do
the following algorithm: pick random elements of S and evaluate det(R). If it is
non-zero, then G has a perfect matching. If it is 0, then output that it has no perfect
matching. The probability that the algorithm errs, that is, it has a perfect matching,
is at most 1/4. Iterating this process t times the probability that the algorithm errs
is at most 1/4t.

One detail that might be interesting is that it is worth choosing the set S in a
finite field Fp. This way we can save the trouble with counting with fractions or with
large numbers. So we choose a prime p bigger than 4n, and we can even choose S

to be the whole Fp.
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9. Perfect matchings in planar
graphs and grids

9.1 Planar graphs

In this section we show a fast method to determine the number of perfect matchings
of planar graphs. We will concentrate to bipartite graphs, but a slight modification
of the method is able to deal with non-bipartite graphs too.

Let G = (X, Y,E) be a bipartite graph with parts |X| = |Y | = n, and let B be
the following n× n matrix:

Buv =

{
1 if (u, v) ∈ E(G),

0 if (u, v) /∈ E(G)

for u ∈ X, v ∈ Y . This matrix is called the bipartite adjacency matrix or incidence
matrix. Then the permanent

per(B) =
∑
π∈Sn

n∏
j=1

Bj,π(j)

counts the number of perfect matchings of G. The problem with the permanent is
that –unlike the determinant– in general there is no fast way to compute it. The idea
is that maybe we can put ± signs into S such that for the obtained signed matrix Bσ

we have per(B) = | det(Bσ)|. Honestly, we should regard such a signing a miracle
since n! terms should have the same sign in the determinant. We will show that for
planar graphs such a miracle happens. We show it through a series of lemma.

Definition 9.1.1. We say that a cycle C of G is evenly placed if G \ C contains a
perfect matching.

Lemma 9.1.2. Let G be a bipartite graph. Let σ : E(G) → {−1, 1} such that every
evenly placed cycle of length 4k contains an odd number of negative edges, and every
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evenly placed cycle of length 4k+2 contains an even number of negative edges. Then
per(B) = | det(Bσ)|, where B and Bσ are the matrices defined above.

Proof. Every perfect matching corresponds to a permutation. Let π and ρ be two
permutations. We need that sgn(π)

∏n
i=1Bk,π(k) and sgn(ρ)

∏n
i=1 Bk,ρ(k) have the

same sign. Note that the union of the two perfect matchings can be decomposed to
edges and even cycles. These even cycles are trivially evenly placed. A cycle of length
2t correspond to a cycle of length t in the permutation πρ−1. Since sgn(π)sgn(ρ) =
sgn(πρ−1) we observe that a cycle of length 4k in the graph G will give a negative
sign for

∏n
i=1Bk,π(k)

∏n
i=1 Bk,ρ(k) and also a negative sign in sgn(πρ−1), while a cycle

of length 4+2 in the graph G will give a positive sign for
∏n

i=1Bk,π(k)

∏n
i=1Bk,ρ(k) and

also a positive sign for sgn(πρ−1). Hence sgn(π)
∏n

i=1Bk,π(k) and sgn(ρ)
∏n

i=1Bk,ρ(k)

have the same sign.

While the above lemma gives a sufficient condition for a good signing, a tiny
problem is that a graph generally contains a lot of cycles, and it is not easy to check
the condition of the lemma for all (evenly placed) cycles. Fortunately, for planar
graphs it is enough to check it for cycles around faces. We call a cycle surrounding
an inner face a boundary cycle.

Lemma 9.1.3. Let G be a bipartite graph. Let σ : E(G) → {−1, 1} such that every
boundary cycle of length 4k contains an odd number of negative edges, and every
boundary cycle of length 4k + 2 contains an even number of negative edges. Then
every evenly placed cycle of length 4k contains an odd number of negative edges, and
every evenly placed cycle of length 4k+2 contains an even number of negative edges.

Proof. Suppose that C is an evenly placed cycle of length 2ℓ. Let F1, F2, . . . , Fk

be the faces inside C. Its boundary cycles are C1, . . . , Ck. Let 2ℓj be the length
of the cycle Cj. Let nC and nCj

be the number of negative edges along C and Ck

respectively. Then we know that nCk
is congruent with ℓk − 1 modulo 2. Then the

number of negative edges modulo 2 around C is

nC ≡
k∑

j=1

nCj
≡

k∑
i=1

(ℓi − 1) (mod 2)

since we count every edges not in C twice. On the other hand, the number of edges
of the graph determined by C and F1, F2, . . . , Fk is

1

2
(2ℓ+ 2ℓ1 + · · ·+ 2ℓk) = ℓ+ ℓ1 + · · ·+ ℓk.
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If there are r points inside C, then the number of vertices is 2ℓ+ r. Then by Euler’s
formula we have

ℓ+ ℓ1 + · · ·+ ℓk = (k + 1) + (r + 2ℓ)− 2.

Hence

ℓ− 1 + r =
k∑

i=1

(ℓi − 1).

Now observe that r is even as the cycle is evenly placed. So

nC ≡
k∑

i=1

(ℓi − 1) ≡ ℓ− 1 (mod 2).

This is exactly what we wanted to prove.

Now we are ready to prove that every bipartite planar graph has a proper edge
signing (so-called Kasteleyn signing).

Theorem 9.1.4. Every planar bipartite graph has a signing σ such that every bound-
ary cycle of length 4k contains an odd number of negative edges, and every boundary
cycle of length 4k + 2 contains an even number of negative edges.

Proof. We prove the statement of the theorem by induction on the number of faces.
If there is only one face, then the statement is trivial since there is no cycle in the
graph. Suppose that we have at least two faces. Let Fouter be the outer face and let
F be a face that has at least one common edge with it. Let E ′ be the set of common
edges of Fouter and F . Delete E ′ from G, the obtained graph has fewer faces so by
induction there is a proper signing of it. Now add back E ′ and sign them in such
a way that F is also properly signed. Note that it cannot ruin the signing of other
bounded faces. We are done.

9.2 Kasteleyn’s theorem

Theorem 9.2.1 (Kasteleyn and independently Fisher and Temperley). Let Zm,n be
the number of perfect matchings of the grid of size m× n. Then

Zm,n =

(
m∏
j=1

n∏
k=1

(
4 cos2

(
πj

m+ 1

)
+ 4 cos2

(
πk

n+ 1

)))1/4

.
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Remark 9.2.2. We could easily construct the proper signing described in the pre-
vious section: put a negative sign to the edges in every second row. Nevertheless we
will use a slightly different strategy: we use complex numbers!

Proof. Note that the grid is a bipartite graph, so we can color the vertices of the
grid by black and white such that only vertices of different color are adjacent. Let S
be the bipartite adjacency matrix) of the graph: Sij = 1 if black and white vertices
bi and wj are adjacent, and 0 otherwise. Then the number of perfect matchings
is exactly per(S), the permanent of S. We will give a "signing" σ of S such that
per(S) = | det(Sσ)|.

Let Sσ
(x,y),(x,y±1) = i and Sσ

(x,y),(x±1,y) = 1, and 0 otherwise. We claim that
per(S) = | det(Sσ)|. One way to see it is the following: from any perfect matching
M1 we can arrive to any other perfect matching M2 by a sequence of moves of the fol-
lowing type: choose two edges of the form e = ((x, y), (x+1, y)), f = ((x, y+1), (x+

1, y + 1) and replace them by e′ = ((x, y), (x, y + 1)), f ′ = ((x+ 1, y), (x+ 1, y + 1),
or do the reverse of this operation (why?). In det(Sσ) this operation does the fol-
lowing thing: the sign of th corresponding permutation changes because we did a
transposition, but also the weight of the perfect matching changes since we changed
two edges of weight 1 to two edges of weight i or vice versa. So every expansion term
of det(Sσ) corresponding to a perfect matching will give the same quantity, hence
per(S) = | det(Sσ)|.

Next we will compute det(Sσ). It will be more convenient to work with the matrix

A =

(
0 Sσ

(Sσ)T 0

)
.

Clearly, det(A) = det(Sσ)2. It turns out that we can give all eigenvectors and
eigenvalues explicitly. Note that the vector consisting of the values f(x, y) is an
eigenvector of A belonging to the eigenvalue λ if

λf(x, y) = f(x+ 1, y) + f(x− 1, y) + if(x, y + 1) + if(x, y − 1),

where f(r, t) = 0 if r ∈ {0,m+ 1} or t ∈ {0, n+ 1}. Let 1 ≤ j ≤ m, 1 ≤ k ≤ n, and
z = eπi

j
m+1 and w = eπi

k
n+1 . Let us consider the vector fj,k defined as follows:

fj,k(x, y) = (zx − z−x)(wy − w−y) = −4 sin

(
πjx

m+ 1

)
sin

(
πky

n+ 1

)
.
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Then with λj,k = z + 1
z
+ i
(
w + 1

w

)
we have

λj,kfj,k(x, y) = fj,k(x+ 1, y) + fj,k(x− 1, y) + ifj,k(x, y + 1) + ifj,k(x, y − 1).

Indeed,

fj,k(x+1, y)+fj,k(x−1, y) = (zx+1−z−x−1)(wy−w−y)+(zx−1−z−x+1)(wy−w−y) =

= (z + z−1)(zx − z−x)(wy − w−y) = (z + z−1)fj,k(x, y),

and

ifj,k(x, y+1)+ifj,k(x, y−1) = i((zx−z−x)(wy+1−w−y−1)+(zx−z−x)(wy−1−w−y+1) =

= i(w + w−1)(zx − z−x)(wy − w−y) = i(w + w−1)fj,k(x, y),

It is easy to see that the vectors fj,k are pairwise orthogonal to each other, conse-
quently they are linearly independent. Since A has nm eigenvalues, we have found
all of them. Note that

λj,k = 2 cos

(
πj

m+ 1

)
+ i2 cos

(
πk

n+ 1

)
.

Hence

Zm,n =

(
m∏
j=1

n∏
j=1

λj,k

)1/2

=

(
m∏
j=1

n∏
j=1

|λj,k|2
)1/4

=

=

(
m∏
j=1

n∏
k=1

(
4 cos2

(
πj

m+ 1

)
+ 4 cos2

(
πk

n+ 1

)))1/4

.

Corollary 9.2.3. We have

lim
m,n→∞

1

mn
logZm,n =

4

π2

∫ π/2

0

∫ π/2

0

log(4 cos2(x) + 4 cos2(y)) dx dy.

Remark 9.2.4. Surprisingly, there is a nice expression for the above integral:

4

π2

∫ π/2

0

∫ π/2

0

log(4 cos2(x) + 4 cos2(y)) dx dy =
1

π

∞∑
k=0

(−1)k

(2k + 1)2
≈ 0.2915.
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Beyond this course 9.2.5. Instead of rectangles one can consider other shapes of
the grid graphs. One particularly interesting choice is the so-called Aztec diamond
(see below).

Figure 9.1: Aztec diamond of size 4.

The Aztec diamond of size n denoted by An has exactly 2n(n+1)/2 perfect match-
ings. The value 1

|An| ln pm(An) =
1
4
ln(2) ≈ 0.1732 is smaller than the value we got

for rectangles. The reason is that the boundary of the Aztec diamond effects heavily
to a random perfect matching. This statement will be more clear if we start to add
some colors to the vertices.

Given a perfect matching (denoted with blue edges) we can color the vertices
of the Aztec diamond with blue, red, green, yellow as follows. First we color the
vertices with black and white corresponding to the bipartite class. Then we color
the end vertices of horizontal edges of the perfect matching to blue if the rightmost
vertex is black, and to red if the rightmost vertex is white. Similarly, we color the
end vertices of vertical edges of the perfect matching to green if the bottom vertex
is black, and to yellow if the bottom vertex is white. What we see in the picture
below that in a random perfect matching the different corners get different colors.
This means that the perfect matching configuration seems to be “frozen” close to the
corners.
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Figure 9.2: Aztec diamond of size 4 with a random perfect matching and the corre-
sponding coloring.

Let use see what happens if we take an Aztec diamond of size 100. Here we only
colored the pixels as the drawing of the graph would be too ugly.

Figure 9.3: Aztec diamond of size 100 with a random perfect matching and the
corresponding coloring.

From this picture one can even make a guess what will be the shape of the
non-frozen area. Yes, it is a circle! This is the so-called arctic circle theorem.
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