Practice problem set 1

1. Let G be a graph with n vertices and $e(G)$ edges, and set $k=\lfloor n / 2\rfloor$. Show that there exists a cut of the graph G containing at least $\frac{k}{2 k-1} e(G)$ edges.
(Hint: consider only those cuts $(A, V \backslash A)$, where $|A|=k$, and choose one of them uniformly at random. Finally count the expected size of $e(A, V \backslash A)$. It is worth distinguishing the cases, where $n=2 k$ or $n=2 k+1$.)
2. A set system \mathcal{H} is called Sperner if for different $A, A^{\prime} \in \mathcal{H}$ neither $A \subseteq A^{\prime}$, nor $A^{\prime} \subseteq A$. Show that for a Sperner-system \mathcal{H} on $\{1,2, \ldots, n\}$ we have

$$
\sum_{A \in \mathcal{H}} \frac{1}{\binom{n}{|A|}} \leq 1
$$

(Hint: consider a random permutation of $1,2, \ldots, n$ and for an $A \in \mathcal{H}$ let E_{A} be the event that the first $|A|$ elements of the permutation are exactly the elements of A. What is $\mathbb{P}\left(E_{A}\right)$? Show that if $A \nsubseteq A^{\prime}$ and $A^{\prime} \nsubseteq A$ then $\mathbb{P}\left(E_{A} \cap E_{A^{\prime}}\right)=0$. From that conclude that if \mathcal{H} is Sperner then $\sum_{A \in \mathcal{H}} \mathbb{P}\left(E_{A}\right) \leq 1$.)
3. Show that for any n positive integers one can choose $\lfloor n / 3\rfloor$ of them such that the equation $a_{1}+a_{2}=a_{3}$ has no solution.
(Hint: let A be the given set, and for an $x \in(0,1)$ consider the set $A_{x}=$ $\{a \in A \mid\{a x\} \in(1 / 3,2 / 3)\}$, where $\{a x\}$ is the fractional part of $a x$, that is, $a x-\lfloor a x\rfloor$. Show that if $a_{1}, a_{2}, a_{3} \in A_{x}$ then $a_{1}+a_{2} \neq a_{3}$, and compute $\mathbb{E}\left|A_{x}\right|$ if we choose $x \in(0,1)$ uniformly at random.)

