Problem set 1

Due date: 02/29/2024 4pm

Introduction to Tutte polynomial
Before you start working on the homework problems read the extended syllabus ${ }^{1}$ carefully and check which problems you need to solve.

Practice exercises:

1. Let $\operatorname{ch}(G, q)$ be the chromatic polynomial. Show that $|\operatorname{ch}(G,-1)|$ is equal to the number of acyclic orientations of the graph G.
2. Let $F(G)$ be the number of forests of a graph G, and let $a(G)$ denote the number of acyclic orientations of the graph G. Show that $F(G) \geq a(G)$.
3. Show that if B_{1}, \ldots, B_{k} are the 2-connected blocks of a graph G, then

$$
T_{G}(x, y)=\prod_{i=1}^{k} T_{B_{i}}(x, y)
$$

Homework exercises:

1. (a) Show that $T_{C_{k}}(x, y)=x^{k-1}+x^{k-2}+\cdots+x+y$.
(b) Let $K_{2}(k)$ be the graph with 2 vertices and k edges between them. Show that $T_{K_{2}(k)}(x, y)=y^{k-1}+y^{k-2}+\cdots+y+x$.
2. Let $\tau(G)$ denote the number of spanning trees of a graph G. Suppose that G has at least 2 vertices. Show that

$$
\tau(G) \leq \prod_{v \in V(G)} d_{v}
$$

where d_{v} denotes the degree of a vertex v.
3. Show that the chromatic polynomial satisfies the identity

$$
\sum_{S \subseteq V(G)} \operatorname{ch}(G[S], x) \operatorname{ch}(G[V \backslash S], y)=\operatorname{ch}(G, x+y) .
$$

Here $G[S]$ is the induced subgraph of the graph G on the vertex set S. Note that $\operatorname{ch}(G[\emptyset], x)=1$.
4. Let G be a 4 -regular graph. Show that the number of Eulerian orientations is exactly $\left|T_{G}(0,-2)\right|$. (An Eulerian orientation is just an orientation of the edges where the in-degree is equal to the out-degree at every vertex of the graph.)

5 . Let G be a d-regular graph on n vertices. Let $T_{G}(x, y)$ denote the Tutte polynomial of the graph G. Show that $T_{G}(0,1) \leq(d-1)^{n}$.
6. Let G be a graph and for each orientation \mathcal{O} of the graph G let $d_{\mathcal{O}}(v)$ be the out-degree of the vertex v. Consider the vectors $d_{\mathcal{O}}=\left(d_{\mathcal{O}}\left(v_{1}\right), \ldots, d_{\mathcal{O}}\left(v_{n}\right)\right) \in \mathbb{R}^{n}$. Let

[^0]P be a polytope determined by the vectors $d_{\mathcal{O}}$. Show that the extreme points of this polytope are exactly the vectors coming from acyclic orientations. In other words, if \mathcal{O} is not an acyclic orientation then it can be written as a convex combination of other vectors $d_{\mathcal{O}^{\prime}}$, while if \mathcal{O} is an acyclic orientation then it cannot be written as a convex combination of other vectors $d_{\mathcal{O}^{\prime}}$.
7. Let G be a graph and for each vertex u we introduce a variable x_{u}. Let us consider the polynomial
$$
P:=\prod_{(u, v) \in E(G)}\left(x_{u}+x_{v}\right) .
$$

First show that with the notations of the previous problem we have

$$
P=\sum_{\mathcal{O}} \prod_{u \in V(G)} x_{u}^{d_{\mathcal{O}}(u)}
$$

Suppose that we expand P in the usual way:

$$
P=\sum c_{\underline{e}} \prod_{u \in V(G)} x_{u}^{e_{u}} .
$$

Show that the number of acyclic orientations is equal to the number of terms with coefficient 1 , that is, $c_{\underline{e}}=1$.
8. Let G be a simple graph. Let $T_{G}(x, y)$ denote the Tutte polynomial of the graph G. Show that $T_{G}(1,-1) \geq 0$.
9. For a graph G and an orientation \mathcal{O} let $d_{\mathcal{O}}$ be the out-degree sequence. Show that the number of different out-degree sequences is exactly $T_{G}(2,1)$, the number of forests.
10. Let G be a d-regular bipartite graph. Let $T_{G}(x, y)$ denote the Tutte polynomial of the graph G. Show that $T_{G}(-d+1,1)=0$.

[^0]: ${ }^{1}$ The extended syllabus can be found at
 http://csikvarip.web.elte.hu/extended_syllabus_Tutte_polynomial.pdf

