Problem set 2

Due date: 03/21/2024 4pm

Permutation Tutte polynomial

Before you start working on the homework problems read the extended syllabus¹ carefully and check which problems you need to solve.

In all problems $\widetilde{T}_H(x, y)$ denotes the permutation Tutte polynomial while $T_G(x, y)$ denotes the usual Tutte polynomial.

1. Let H = (A, B, E) be a connected bipartite graph with |A| = a and |B| = b. Let alt(H) be the coefficient of x^a . Show that this is also the coefficient of y^b .

2. Determine $T_{K_{a,b}}(x, y)$ for the complete bipartite graph $K_{a,b}$. Determine the Tutte polynomial of the uniform matroid $U_{n,r}$ whose bases are all the *r*-element subsets of the *n*-element ground set.

3. Suppose that G is a 2-connected loopless graph and it is not a cycle. Let $T_G(x, y) = \sum_{i,j} t_{i,j} x^i y^j$ be its Tutte polynomial. Show that $t_{1,1} \ge 1$.

4. Let G be a 2-connected loopless graph on n vertices whose shortest cycle has length g. Let $T_G(x, y) = \sum_{i,j} t_{i,j} x^i y^j$ be its Tutte polynomial. Show that $t_{i,1} \ge 1$ for $0 \le i \le n - g$.

5. Suppose that H is a connected bipartite graph and $\widetilde{T}_H(x, y) = \sum t_{i,j} x^i y^j$. Show that if $t_{i,j} > 0$ for some i and j, then $t_{i',j'} > 0$ whenever $i' \leq i, j' \leq j$ and $(i', j') \neq (0, 0)$. Conclude that the same statement holds true for the Tutte polynomial $T_G(x, y)$ of every 2-connected graph G.

6. Let G be a connected planar graph with dual graph G^* . Show that $T_G(x, y) = T_{G^*}(y, x)$.

7. Let H = (A, B, E) be a connected bipartite graph with |A| = a and |B| = b. Let alt(H) be the coefficient of x^a . Show that for (x - 1)(y - 1) = 1 we have

$$T_H(x,y) = \operatorname{alt}(H)x^a y^b.$$

8. Let H = (A, B, E) be a connected bipartite graph. For $S \subseteq A$ or $S \subseteq B$ let H_S be the subgraph of H induced by the set $S \cup N_H(S)$, where $N_H(S) = \{u \in V \mid \exists v \in S : (u, v) \in E\}$. Show that

$$\widetilde{T}_{H}(x,y) = \sum_{\substack{S \subseteq A, T \subseteq B\\ e(S,T)=0}} \operatorname{alt}(H_{S})\operatorname{alt}(H_{T})(x-1)^{|S|}(y-1)^{|T|}.$$

9. Show that for every bipartite graph H there is a matroid M and a basis $B \in \mathcal{B}(M)$ for which the local basis exchange graph $H_M[B]$ is isomorphic to H.

¹The extended syllabus can be found at

http://csikvarip.web.elte.hu/extended_syllabus_counting_in_sparse_graphs.pdf

10. Let $T_G(x, y)$ be the Tutte polynomial of a graph G.

(a) Show that

$$T_G(2,1)T_G(1,2) \ge T_G(1,1)T_G(2,2).$$

(b) For parameters q > 1 and w > 0 we define the following probability space on the subsets of the edge set E(G). For an $F \subseteq E(G)$ let

$$\mathbb{P}_{q,w}(F) = \frac{1}{Z} q^{k(F)} w^{|F|}$$

where Z is the normalizing constant: $Z = \sum_{F \subseteq E(G)} q^{k(F)} w^{|F|}$. Show that

$$\mathbb{P}_{q,w}(F_1) \cdot \mathbb{P}_{q,w}(F_2) \le \mathbb{P}_{q,w}(F_1 \cap F_2) \cdot \mathbb{P}_{q,w}(F_1 \cup F_2).$$

(c) Show that if $1 \le x_1 < x_2$, $1 \le y_1 < y_2$ and $(x_2 - 1)(y_2 - 1) \ge 1$, then $T_G(x_1, y_2)T_G(x_2, y_1) \ge T_G(x_1, y_1)T_G(x_2, y_2).$

11. (a) Let H = (A, B, E) be a connected bipartite graph with |A| = a and |B| = b. Let $\operatorname{alt}(H)$ be the coefficient of x^a . Show that $\operatorname{alt}(H) \ge \left(\frac{1}{2}\right)^{e(H)}$.

(b) For a connected graph G let us consider the graph \mathcal{T}_G whose vertices are the spanning trees of G and we connect two vertices if the symmetric difference of the two spanning trees has size exactly 2. Show that the largest degree of \mathcal{T}_G is at least $\log_2 \tau(G)$, where $\tau(G)$ is the number of spanning trees.

12. Let G be a connected graph, and let us put a weight to each edge selected uniformly at random from the interval [0,1]. Let W_G be the weight of the minimum weight spanning tree. Show that the expected value $\mathbb{E}W_G$ of the random variable W_G is determined by the Tutte polynomial of the graph G.