Problem set 3

Due date: 04/18/2024 4pm
Matching and subgraph counting polynomial
Before you start working on the homework problems read the extended syllabus ${ }^{1}$ carefully and check which problems you need to solve.

In all problems $\mu(G, x)=\sum_{k=0}^{n / 2}(-1)^{k} m_{k}(G) x^{n-2 k}$, where G is a graph on n vertices and $m_{k}(G)$ denotes the number of matchings of size k. Furthermore, for a d-regular graph G let $F_{G}\left(x_{0}, \ldots, x_{d}\right)=\sum_{A \subseteq E}\left(\prod_{v \in V} x_{d_{A}(v)}\right)$ be the subgraph counting polynomial.

1. Let $G=(A, B, E)$ be a bipartite graph on n vertices. Show that

$$
\sum_{u \in A} \mu(G-u, x)=\frac{1}{2} \frac{d}{d x} \mu(G, x)+\left(|A|-\frac{n}{2}\right) \frac{\mu(G, x)}{x}
$$

2. Let G be a 6 -regular graph. Express $F_{G}(1,0,1,0,1,0,1)$ in terms of the number of vertices and connected components of G.
3. Let $\widetilde{M}(G, x)=x^{n}+m_{1}(G) x^{n-1}+m_{2}(G) x^{n-2}+\ldots$. Show that

$$
\sum_{S \subseteq V(G)} \widetilde{M}(G[S], x) \widetilde{M}(G[V-S], y)=\widetilde{M}(G, x+y)
$$

Here $G[S]$ is the induced subgraph on the vertex set S.
4. Let G be a d-regular graph and for some β let $\gamma=\frac{e^{\beta}-e^{-\beta}}{e^{\beta}+e^{-\beta}}$. Show that

$$
\sum_{\sigma \in\{-1,1\}^{V(G)}} \exp \left(\beta \sum_{(u, v) \in E(G)} \sigma_{u} \sigma_{v}\right)=2^{v(G)}\left(\frac{e^{\beta}+e^{-\beta}}{2}\right)^{e(G)} F_{G}\left(1,0, \gamma, 0, \gamma^{2}, 0, \ldots\right)
$$

5. Let G be a graph and let $u \in V(G)$ be a fixed vertex. Let λ be a root of the matching polynomial $\mu(G, x)$ such that $\mu(G-u, \lambda) \neq 0$. We know that λ is an eigenvalue of the adjacency matrix of the path-tree $T(G, u)$. Give a corresponding eigenvector of the matrix! (It is enough to give one vector, you don't have to determine the whole eigenspace.) Give the answer in terms of the numbers $\mu(H, \lambda)$, where H are induced subgraphs of G.
6. (a) Let $\gamma(G)$ be the largest zero of the matching polynomial of a graph G. Show that if H is a subgraph of G, then $\gamma(H) \leq \gamma(G)$.
(b) Show that if $T(G, u)$ is the path-tree of the connected graph G from vertex u, then $\gamma(T(G, u))=\gamma(G)$.

[^0]7. Let v be a vertex of G, and
$$
\frac{\mu(G-v, z)}{\mu(G, z)}=\sum_{k} \frac{c_{k}}{z-\alpha_{k}} .
$$

Show that $c_{k} \geq 0$.
8. Let G be a 4-regular graph. Show that $F_{G}(0,1,0,0,0)=F_{G}\left(1,-\frac{1}{2}, 0, \frac{1}{2},-1\right)$. (Hint: use $G_{e}=\left(\begin{array}{cc}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right)$ at every edge with appropriate t.)
9. Let G be a d-regular graph. Let $\gamma(G)$ be the largest zero of the matching polynomial $\mu(G, x)$. Show that $\gamma(G) \geq \gamma\left(K_{d+1}\right)$. Show that if G is bipartite, then $\gamma(G) \geq \gamma\left(K_{d, d}\right)$ is also true.
10. Given a graph G. Let $m_{k}(G)$ denote the number of matchings of size k. Show that the numbers $m_{1}(G), m_{2}(G), \ldots, m_{\lfloor n / 2\rfloor}(G)$ together with the number of vertices determine the numbers $m_{1}(\bar{G}), m_{2}(\bar{G}), \ldots, m_{\lfloor n / 2\rfloor}(\bar{G})$, where \bar{G} is the complement of the graph G.

[^0]: ${ }^{1}$ The extended syllabus can be found at
 http://csikvarip.web.elte.hu/extended_syllabus_counting_in_sparse_graphs.pdf

