Problem set 5

Due date: 05/30/2024 4pm
 Empirical measures and limits

Before you start working on the homework problems read the extended syllabus ${ }^{1}$ carefully and check which problems you need to solve.

1. Let $x>1$ and let $\left(G_{n}\right)_{n}$ be a sequence of connected d-regular graphs such that $v\left(G_{n}\right) \rightarrow \infty$. Compute the limit

$$
\lim _{n \rightarrow \infty} T_{G}\left(x, \frac{x}{x-1}\right)^{1 / v\left(G_{n}\right)}
$$

2. For a graph G on n vertices let $\operatorname{ch}(G, q)=\prod_{j=1}^{n}\left(q-\alpha_{i}\right)$ be the chromatic polynomial. Let $\rho_{G}^{c}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\alpha_{j}}$ be the uniform measure supported on the zeros of $\operatorname{ch}(G, q)$, where we take the multiplicities into account. Show that the sequence of paths and cycles are Benjamini-Schramm convergent together, but the sequence of measures $\rho_{P_{n}}^{c}, \rho_{C_{n}}^{c}$ is not weakly convergent together.
3. Let $d \geq 3$ and let \mathbb{T}_{d}^{k} be the finite graph obtained from the infinite d-regular tree \mathbb{T}_{d} by keeping the vertices that are of distance at most k from a fixed vertex o. Let $0<p<\frac{1}{d-1}$ and let us consider a random subgraph of \mathbb{T}_{d}^{k} by keeping each edge with probability p and delete it with probability $1-p$. Let p_{k} be the probability that there is a path from o to a vertex of distance k in the obtained random graph. Show that $\lim _{k \rightarrow \infty} p_{k}=0$. For bonus 1 point: is the statement still true if $p=\frac{1}{d-1}$?
4. Let G be a d-regular graph on n vertices with chromatic polynomial $\operatorname{ch}(G, x)=$ $\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$. Let g be the length of the shortest cycle of the graph G. Determine the value of

$$
\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{k}
$$

for $1 \leq k \leq g-2$.
5. Let G be a graph. Show that the chromatic polynomial $\operatorname{ch}(G, x)$ has no zero in the open interval $(0,1)$.
6. Let G be a graph. Show that the matching polynomial $\mu(G, x)$ has a zero in the closed interval $[0,1]$.
7. Let G be a bipartite graph that is not a forest. Show that its chromatic polynomial has a non-real zero.

[^0]8. Let q be a positive integer and $-1 \leq w \leq 0$. As usual let $Z_{G}(q, w)=\sum_{A \subseteq E(G)} q^{k(A)} w^{|A|}$, where $k(A)$ denotes the number of connected components of the graph (\bar{V}, A). Show that if G is a bipartite graph with $v(G)$ vertices and $e(G)$ edges, then
$$
Z_{G}(q, w) \geq q^{v(G)}\left(1+\frac{w}{q}\right)^{e(G)}
$$

Is the statement true if $q>2$, but not necessarily integer?
9. Let $F_{G}\left(x_{0}, x_{1}, \ldots, x_{d}\right)$ be the subgraph counting polynomial. Suppose that $0<\gamma<$ $\frac{1}{d-1}$. Show that if $\left(G_{n}\right)_{n}$ is a sequence of d-regular graphs such that $g\left(G_{n}\right) \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty} F_{G_{n}}\left(1,0, \gamma, 0, \gamma^{2}, 0, \gamma^{3}, \ldots\right)^{1 / v\left(G_{n}\right)}=1
$$

Let $\beta>0$ such that $\frac{e^{\beta}-e^{-\beta}}{e^{\beta}+e^{-\beta}}<\frac{1}{d-1}$ and

$$
Z_{\mathrm{Is}(\beta)}(G)=\sum_{\sigma: V(G) \rightarrow\{-1,1\}} \exp \left(\beta \sum_{(i, j) \in E(G)} \sigma_{i} \sigma_{j}\right) .
$$

Show that if $\left(G_{n}\right)_{n}$ is a sequence of d-regular graphs such that $g\left(G_{n}\right) \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty} Z_{\mathrm{Is}(\beta)}(G)^{1 / v\left(G_{n}\right)}=2\left(\frac{e^{\beta}+e^{-\beta}}{2}\right)^{d / 2}
$$

10. For a graph G let $\operatorname{ssfo}(G)$ be the number of orientations of G without source and sink. (SSfo stands for source and sink free orientation.) Let $\left(G_{n}\right)_{n}$ be a sequence of 3-regular graphs such that $g\left(G_{n}\right) \rightarrow \infty$, where $g(G)$ denotes the girth of the graph G. Show that

$$
\lim _{n \rightarrow \infty} \operatorname{ssfo}\left(G_{n}\right)^{1 / v\left(G_{n}\right)}=\frac{3}{\sqrt{2}}
$$

[^0]: ${ }^{1}$ The extended syllabus can be found at
 http://csikvarip.web.elte.hu/extended_syllabus_counting_in_sparse_graphs.pdf

