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Preface

Tutte polynomial is a fascinating object that unifies several counting problems about
graphs including the enumeration of proper colorings, spanning trees and acyclic
orientations.

This lecture note consists of two parts. In the first part we introduce the basics
of the Tutte polynomial. Even in this part we included recent advancements like the
refutation of the Merino–Welsh conjecture for matroids.

The second part of the lecture note is about limits of Tutte polynomials. This
part is admittedly much more involved and the tools introduced here go way beyond
the study of the Tutte polynomial. It turns out that it is very hard to work with
the Tutte polynomial directly, and we need to introduce concepts like the matching
polynomial that are much more amenable to study. Building a bridge between the
Tutte polynomial and the matching polynomial also requires new tools like the gauge
transformation which is essentially a combinatorial identity prover technique that
also provides unexpected connections between subgraphs and orientations. Another
useful concept that we will utilize is the empirical root measure that constitute a
bridge between finite graphs and their limit objects. Here we also need to develop
the basics of the Benjamini–Schramm convergence to make our graph convergence
arguments rigorous.

This is a hard course that involves ideas from several branches of mathematics. If
you understand the first part and have a superficial understanding of the second part
that is already a very good achievement. We will not be able to cover everything at
the classes. Parts that are omitted at the lectures are marked with a *.

I hope you will you enjoy the course!
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Part I

Basics
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1. Tutte polynomial

1.1 Introduction

In this chapter we introduce the so-called Tutte polynomial.

Definition 1.1.1 ([48]). Let G = (V,E) be an arbitrary graph. Then the Tutte
polynomial of G is defined as

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |,

where k(A) denotes the number of connected components of the graph (V,A).

There are many excellent surveys about the properties of the Tutte polynomial
and its applications [9, 21, 56, 24] or the book [25].
In this lecture note we allow loops and multiple edges. The Tutte polynomial satisfies
the following recursion:

TG(x, y) =


xTG−e(x, y) if e ∈ E(G) is a bridge,
yTG−e(x, y) if e ∈ E(G) is a loop,
TG−e(x, y) + TG/e(x, y) if e ∈ E(G) is neither a bridge, nor a loop.

Bridge is just another word for a cut edge.

From this recursion it follows that

TG(x, y) =
∑
i,j

ti,jx
iyj,

where ti,j ≥ 0. These numbers have a combinatorial meaning in terms of spanning
trees.
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1.2 Special points

The main feature of the Tutte polynomial is the wide variety of enumeration problems
that are special evaluations of the Tutte polynomial.

Theorem 1.2.1. Let G be a connected graph.
(a) TG(1, 1) counts the number of spanning trees.
(b) TG(2, 1) counts the number of spanning forests, that is, acyclic edge subsets.
(c) TG(1, 2) counts the number of connected subgraphs.
(d) TG(2, 2) = 2e(G).

Proof. We have

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |,

where k(E) = 1 since G is connected. Note that 0k = 0 except if k = 0, thus
(1 − 1)k(A)−k(E)(1 − 1)k(A)+|A|−|V | = 1 if and only if k(A) = k(E) = 1, and |A| =
|V | − k(A) = |V | − 1, thus A is the edge set of a spanning tree. Parts (b) and (c)
follow the same way, part (d) is completely trivial.

(a) TG(2, 1) spanning forests (b) TG(1, 1) spanning trees

(c) TG(2, 0) acyclic orientations (d) TG(0, 2) strong orientations

Theorem 1.2.2. Let G be a connected graph.
(a) TG(2, 0) counts the number of acyclic orientations.
(b) TG(1, 0) counts the number of acyclic orientations with a unique source vertex
that is fixed.
(c) TG(0, 2) counts the strongly connected orientations.

4



Proof. We only prove part (a), the other two parts are similar.
Let a(G) be the number of acyclic orientations. If G contains a loop, then a(G) =

0. If G contains a bridge e, then a(G) = 2a(G − e) since we can direct the edge e

anyway. If an edge e is neither a loop, nor a bridge, then let us consider an acyclic
orientation O of the graph G−e. Such an orientation always comes from a topological
order, that is, an ordering of the vertices in such a way that every edge is oriented
according to the orientation, left to right. Thus we can always orient the edge e at
least one way: simply orient it according to some topological order consistent with
the acyclic orientation O. It can happen that we can orient the edge e in both ways.
This means that in G− e there is no directed path between the end vertices of e in
any direction. Then it means that O corresponds to an acyclic orientation of G/e.
Hence a(G) = (a(G− e)− e(G/e)) + 2a(G/e) = a(G− e) + a(G/e). For the empty
graph On on n vertices we have a(On) = TOn(2, 0) = 1 (empty edge set A), thus the
recursion and the base cases of a(G) and TG(2, 0) coincide. Hence TG(2, 0) = a(G).

1.3 Chromatic polynomial

In this section we introduce the so-called chromatic polynomial.

Definition 1.3.1. [45] Let G be a graph. A map φ : V (G) → {1, 2, . . . , q} is a
proper coloring with q colors if φ(u) ̸= φ(v) whenever (u, v) ∈ E(G).

The number of proper colorings of G with q colors is denoted by ch(G, q).

Remark 1.3.2. The function ch(G, q) is polynomial in q. This is called the chromatic
polynomial of the graph G.

Proposition 1.3.3. If e ∈ E(G) is a loop, then ch(G, q) = 0. If e ∈ E(G) is a
bridge, then ch(G, q) = q−1

q
ch(G−e, q). If e ∈ E(G) is neither loop, nor bridge, then

we have
ch(G, q) = ch(G− e, q)− ch(G/e, q),

where G/e denotes the graph obtained from G by contracting the edge e.

Proof. Let us consider the proper colorings of G − e. If e = (u, v) then we can
distinguish two cases: if u and v get different colors then it is even a proper coloring
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of G. If u and v get the same color then it corresponds to a proper coloring of G/e.
Hence

ch(G− e, q) = ch(G, q) + ch(G/e, q).

The chromatic polynomial is a special evaluation of the Tutte-polynomial. In-
deed, one only needs to compare the recursion formulas of the two polynomials to
prove the following statement.

Theorem 1.3.4. We have

ch(G, q) = (−1)v(G)−k(G)qk(G)TG(1− q, 0).

1.4 Statistical physics and the Tutte polynomial

In this section we review some classical statistical physical models that are related
to the Tutte polynomial.

1.4.1 Ising-model

In the case of the Ising-model the vertices of the graph G represent particles. These
particles have a spin which can be up (+1) or down (−1). Two adjacent particles
have an interaction eβ if they have the same spin, and e−β if they have different
spin. Suppose also that there is an external magnetic field that breaks the sym-
metry between +1 and −1. This defines a probability distribution on the possible
configurations as follows: for a random spin configuration S:

P(S = σ) =
1

Z
exp

 ∑
(u,v)∈E(G)

βσ(u)σ(v) +B
∑

u∈V (G)

σ(u)

 ,

where Z is the normalizing constant:

ZIs(G,B, β) =
∑

σ:V (G)→{−1,1}

exp

 ∑
(u,v)∈E(G)

βσ(u)σ(v) +B
∑

u∈V (G)

σ(u)

 .

Z is called the partition function of the Ising-model.

When β > 0 we say that it is a ferromagnetic Ising-model, and when β < 0, then
we say that it is an antiferromagnetic model. It turns out that the model behaves
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very differently in the two regimes even if we only consider extremal graph theoretic
questions.

1.4.2 Potts-model and random-cluster model

Potts-model is a generalization of the Ising-model. Again the vertices of the graph
G represent particles, but this time their spin or state can be one of q different
states, i. e., σ : V (G) → [q]. Two adjacent particles have an interaction eβ if
they are in the same state, and no interaction otherwise. This defines a probability
distribution on the possible configurations as follows: for a random configuration S:
let 1(statement) = 1 if the statement is true and 0 otherwise, then

P(S = σ) =
1

Z
exp

 ∑
(u,v)∈E(G)

β1(σ(u) = σ(v))

 ,

where Z is the normalizing constant:

ZPo(G, q, β) =
∑

σ:V (G)→[q]

exp

 ∑
(u,v)∈E(G)

βI(σ(u) = σ(v))

 .

Similarly to the previous case, Z is called the partition function of the Potts-model.
In the case when β is large, then the system prefers configurations where the particles
are in the same state. When β is a large negative number, then the system prefers
configuration where adjacent vertices are in different states. In the limiting case
β = −∞ we get that limβ→−∞ e−β|E|Z = ch(G, q).

Potts-model is very strongly related to the so-called random cluster model. In
this model, the probability distribution is on the subsets of the edge set E(G), and
for a random subset F we have

P(F = F ) =
1

Z
qk(F )w|F |,

where k(F ) is the number of connected components of the graph G′ = (V (G), F ).
Here q is non-negative and w ≥ −1, but not necessarily integers, and Z is the
normalizing constant

ZRC(G, q, w) =
∑

F⊆E(G)

qk(F )w|F |.

Lemma 1.4.1. Let q be a positive integer, and eβ = 1 + w. Then

ZPo(G, q, β) = ZRC(G, q, w).
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Proof. Clearly,

ZPo(G, q, β) =
∑

σ:V (G)→[q]

exp

 ∑
(u,v)∈E(G)

βI(σ(u) = σ(v))


=

∑
σ:V (G)→[q]

∏
(u,v)∈E(G)

(1 + (eβ − 1)I(σ(u) = σ(v)))

=
∑

σ:V (G)→[q]

∏
(u,v)∈E(G)

(1 + wI(σ(u) = σ(v)))

=
∑

σ:V (G)→[q]

∑
A⊆E(G)

w|A|
∏

(u,v)∈A

I(σ(u) = σ(v))

=
∑

A⊆E(G)

w|A|

 ∑
σ:V (G)→[q]

∏
(u,v)∈A

I(σ(u) = σ(v))


=

∑
A⊆E(G)

w|A|qk(A)

= ZRC(G, q, w).

There is a very clear connection between the Tutte-polynomial and the partition
function of the random cluster model ZRC(G, q, w). Namely,

TG(x, y) = (x− 1)−k(G)(y − 1)−v(G)ZRC(G, (x− 1)(y − 1), y − 1).

1.5 Weighted homomorphisms into a matrix

Given a graph G = (V,E), a q×q symmetric matrix N and a ν ∈ Rq we can consider

ZG(N, ν) =
∑

φ:V→[q]

∏
(u,v)∈E

Nφ(u),φ(v) ·
∏
u∈V

νφ(u).

Clearly, this generalises both the Ising model and the Potts model. In case of the

Ising model, q = 2 and N =

(
eβ e−β

e−β eβ

)
and ν =

(
eB

e−B

)
, while in the case

of the Potts model we need to consider the matrix whose diagonal elements are
eβ = 1 + w, and the off-diagonal elements are 1.
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2. Edge activities

2.1 Introduction

In this chapter we introduce an alternative description of the Tutte polynomial. For
Tutte it was a definition, for us it will be a theorem.

Theorem 2.1.1 (Tutte [48]). Let G be a connected graph with m edges. Label the
edges with 1, 2, . . . ,m arbitrarily. In case of a spanning tree T of G, let us call an
edge e ∈ E(T ) internally active if e has the largest label among the edges in the cut
determined by T and e by removing e from T . Let us call an edge e /∈ E(T ) externally
active if e has the largest label among the edges in the cycle determined by T and e

by adding e to T . Let ia(T ) and ea(T ) be the number of internally and externally
active edges, respectively. Then

TG(x, y) =
∑

T∈T (G)

xia(T )yea(T ),

where the summation goes for all spanning trees of G.

Theorem 2.1.1 was originally a definition for the Tutte polynomial [48]. This
characterization of the Tutte polynomial immediately shows that the coefficients
of the Tutte polynomial are non-negative. In this theorem, it is important that
we consider the same labeling of the edges for all spanning trees. For those who
have never seen this definition before, it might be very surprising that the Tutte
polynomial is independent of the actual choice of the labeling.

Proof. For a spanning tree T let IA(T ) be the set of internally active edges, and
EA(T ) be the set of externally active edges. Then we can write∑

T∈T (G)

xia(T )yea(T ) =
∑

T∈T (G)

(1 + (x− 1))ia(T )(1 + (y − 1))ea(T )
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=
∑

T∈T (G)

∑
S1⊆IA(T )

∑
S2⊆EA(T )

(x− 1)|S1|(y − 1)|S2|.

A very natural idea is to make a map (T, S1, S2) 7→ A ∈ 2E, and a natural candidate
is A = (T \S1)∪S2. The question is whether we can get back (T, S1, S2) from A. This
is again easy: think of the labels as weights, and in each component let us choose a
minimum weight spanning tree, then contract the connected components of A and
in the obtained graph choose a maximum weight spanning tree. Let S1 be the edges
of this latter graph, and let S2 be those edges that were not in a minimum weight
spanning tree of any connected component. Then T = (A \ S2) ∪ S1 is a spanning
tree. Observe that by the construction each edge of S1 must be internally active
with respect to T , and each edge of S1 is externally active with respect to T . Since
the edges of S1 goes between different components of A we have |S1| = k(A)− k(E).
The edges of S2 goes inside the components of A we get that |S2| = |A|+k(A)−|V |.

We show that it is a one-to-one map. Observe that an edge of S2 cannot go
between the connected components of T \ S1, because that would mean that it
has a bigger label than some internally active edge in its fundamental cycle, but
it contradicts the definition of internal activity. This means that A and T \ S1

has the same connected components. But it immediately determines S1: only the
maximum weight spanning tree in the contracted graph has the property that all
of its edges are active. Similarly, only the minimum weight spanning tree in each
connected component of A has the property that all other edges of A in the same
connected component are externally active. This means that A uniquely determines
T, S1, S2.

2.2 Local basis exchange graph

Definition 2.2.1. The local basis exchange graph H[T ] of a graph G = (V,E) with
respect to a spanning tree T is defined as follows. The graph H[T ] is a bipartite
graph whose vertices are the edges of G. One bipartite class consists of the edges of
T , the other consists of the non-edges of T , and we connect a spanning tree edge e

with a non-edge f if f is in the cut determined by e and T , equivalently, e is in the
cycle determined by f and T .

Figure 1 depicts a graph G with a spanning tree T and the bipartite graph H[T ]

obtained from T .
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Figure 2.1: Example for a graph G and the local basis exchange graph H[T ] obtained
from a spanning tree T .

2.3 Matroids

The Tutte polynomial naturally extends to matroids. Recall that a matroid M is a
pair (E, I) such that I ⊆ 2E, called the independent sets, satisfying the axioms (i)
∅ ∈ I, (ii) if A′ ⊆ A ∈ I, then A′ ∈ I, and (iii) if A,B ∈ I such that |B| < |A|, then
there exists an x ∈ A \ B such that B ∪ {x} ∈ I. Given a set S ⊆ E, the maximal
independent subsets of S all have the same cardinality, and this cardinality is called
the rank of the S, denoted by r(S). The maximum size independent sets of M are
called bases, and their set is denoted by B(M). The dual of a matroid M is the
matroid M∗ whose bases are {E \ B | B ∈ B(M)}. For further details on matroids
see for instance [44]

Given a graph G = (V,E) the edge sets of the spanning forests of G form the inde-
pendent sets of a matroid MG called the cycle matroid of G. If G is connected, then
the basis of MG are the spanning trees of G. One can define the Tutte polynomial
of a matroid as

TM(x, y) =
∑
S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S),

where r(S) is the rank of a set S ⊆ E. When M = MG, then TMG
(x, y) = TG(x, y).

Observe that even the definition of local basis exchange works for general matroids
and their basis.
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3. Brylawski’s identities

3.1 Introduction

In this chapter we study the so-called Brylawski’s identities valid for the Tutte poly-
nomial. We have seen that written as a usual two-variate polynomial TG(x, y) =∑

i,j tijx
iyj, the coefficients tij encode the number of certain spanning trees, namely

spanning trees with internal activity i and external activity j with respect to a fixed
ordering of the edges. It is not hard to prove that t00 = 0 and t10 = t01 if the
graph G has at least 2 edges. In general, Brylawski [9] proved a collection of linear
relations between the coefficients of the Tutte polynomial. Namely, he proved that
if e(G) ≥ h+ 1 for some h ≥ 0, then

h∑
i=0

h−i∑
j=0

(
h− i

j

)
(−1)jtij = 0.

In particular, the third relation gives that if e(G) ≥ 3, then t20 − t11 + t02 = t10.

Example 3.1.1. The Tutte polynomial of the cube graph is the following.

1 x x2 x3 x4 x5 x6 x7

1 11 32 40 29 15 5 1

y 11 46 52 24

y2 25 39 16

y3 20 8

y4 7

y5 1

We can see that t10 = t01 = 11 and t20 − t11 + t01 = 32− 46 + 25 = 11 = t10.

Note that one can extend Brylawski’s identities to the Tutte polynomial of an
arbitrary matroid M on a set E. In fact, we will only use the fact that there is a
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rank function r(·) on the subsets of E satisfying r(S) ≤ min(r(E), |S|) for every set
S ⊆ E. In this case, the Tutte polynomial of the system M = (E, r) is defined as

TM(x, y) =
∑
S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S),

where r(S) is the rank of a set S ⊆ E. The Tutte polynomial of a graph G simply
corresponds to the graphical matroid M of the graph G. In [29], Gordon extended
Brylawski’s result for ranked sets: besides r(S) ≤ min(r(E), |S|), he assumed the
normalization r(∅) = 0, and was able to extend Brylawski’s identities for h = |E|.

Here we extend the work of Gordon and Brylawski for h > |E|, and also simplify
the proof significantly. We only use the special form of the polynomial, namely that
it behaves nicely along the hyperbola (x − 1)(y − 1) = 1. We do not use anything
about matroids or rank functions. Our generalized Brylawski’s identities are the
following.

Theorem 3.1.2 (Generalized Brylawski’s identities). Let M = (E, r), where E is
a set, and r : 2E → Z≥0 is a rank function on the subsets of E, satisfying r(S) ≤
min(r(E), |S|) for every set S ⊆ E. Let

TM(x, y) =
∑
S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S)

be the Tutte polynomial of the system M = (E, r). Let m denote the size of E, and
r the rank of E. By writing TM(x, y) =

∑
i,j tijx

iyj, the coefficients tij satisfy the
following identities. For any integer h ≥ 0, we have

h∑
i=0

h−i∑
j=0

(
h− i

j

)
(−1)jtij = (−1)m−r

(
h− r

h−m

)
,

with the convention that when h < m, the binomial coefficient
(
h−r
h−m

)
is interpreted

as 0.

In particular, for the graphical matroid of a graph G, we get the following.

Theorem 3.1.3 (Generalized Brylawski’s identities for graphs). Let G be any graph
with n vertices, m edges and c connected components. Let TG(x, y) =

∑
i,j tijx

iyj be
the Tutte polynomial of the graph G. Then for any integer h ≥ 0, we have

h∑
i=0

h−i∑
j=0

(
h− i

j

)
(−1)jtij = (−1)m−n+c

(
h− n+ c

h−m

)
,

with the convention that when h < m, the binomial coefficient
(
h−n+c
h−m

)
is interpreted

as 0.
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3.2 Proof of Theorem 3.1.2

This entire section is devoted to the proof of Theorem 3.1.2.
By definition,

TM(x, y) =
∑
S⊆E

(x− 1)r−r(S)(y − 1)|S|−r(S).

Let us introduce a new variable z, and plug in x = z
z−1

and y = z. Then

TM

(
z

z − 1
, z

)
=
∑
S⊆E

(z − 1)|S|−r = (z − 1)−rzm =
zm

(z − 1)r
.

Since TM(x, y) =
∑

i,j tijx
iyj, we have

TM

(
z

z − 1
, z

)
=
∑
i,j

tij

(
z

z − 1

)i

zj =
zm

(z − 1)r
.

Hence ∑
i,j

ti,jz
i+j(z − 1)r−i = zm.

Note that if i > r, then tij = 0 as r(S) ≥ 0 for every set S. Hence, both sides are
polynomials of z, so we can compare the coefficients of zk.∑

i,j

ti,j(−1)r−k+j

(
r − i

k − (i+ j)

)
= δk,m,

where δk,m is 1 if k = m, and 0 otherwise. This is not yet exactly Brylawski’s identity,
but taking appropriate linear combinations of these equations yields Brylawski’s
identities. Let

Ch,k = (−1)k
(
h− r

h− k

)
.

Then
h∑

k=0

Ch,k

(∑
i,j

ti,j(−1)r−k+j

(
r − i

k − (i+ j)

))
= Ch,m.

Let Sh be the left hand side. Note that

Sh =
h∑

k=0

Ch,k

(∑
i,j

ti,j(−1)r−k+j

(
r − i

k − (i+ j)

))

=
h∑

k=0

(−1)k
(
h− r

h− k

)(∑
i,j

ti,j(−1)r−k+j

(
r − i

k − (i+ j)

))
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=
∑
i,j

ti,j(−1)r+j

(
h∑

k=0

(
h− r

h− k

)(
r − i

k − (i+ j)

))

=
∑
i,j

ti,j(−1)r+j

(
h− i

h− (i+ j)

)
=
∑
i,j

(
h− i

j

)
ti,j(−1)r+j.

Then ∑
i,j

(
h− i

j

)
ti,j(−1)j = (−1)m−r

(
h− r

h−m

)
.

Remark 3.2.1. Once one conjectures Theorem 3.1.3, then it can be proved by
the deletion-contraction identities via simple induction on h. The more general
Theorem 3.1.2 can be proved by certain recursions too, as it was shown by Gordon
[29], but seems to be considerably more work than the proof presented above.

Remark 3.2.2. One key application of the Brylawski’s identities is the characteriza-
tion when TG(x, y) can be factorized: it is irreducible if and only if G is 2-connected.
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4. The Merino–Welsh conjecture is
false for matroids

4.1 Introduction

For a connected graph G, let τ(G), a(G) and a∗(G) denote the number of spanning
trees, the number of acyclic orientations and the number of strongly connected ori-
entations, respectively. Merino and Welsh [42] conjectured that if G is a connected
graph without loops and bridges, then

max(a(G), a∗(G)) ≥ τ(G).

We have seen that a(G), a∗(G), and τ(G) are all evaluations of the Tutte polynomial,
namely, TG(2, 0) = a(G), TG(0, 2) = a∗(G), and TG(1, 1) = τ(G).

Conde and Merino [20] also suggested the following “additive” and “multiplicative”
versions of the conjecture:

TG(2, 0) + TG(0, 2) ≥ 2TG(1, 1),

and
TG(2, 0)TG(0, 2) ≥ TG(1, 1)

2.

It is easy to see that the multiplicative version implies the additive version which in
turn implies the maximum version.

The Merino–Welsh conjecture and its variants triggered considerable attention.
Thomassen [47] proved that the conjecture is true if the graph G is sufficiently
sparse or sufficiently dense. Lin [35] proved it for 3-connected graphs satisfying
certain degree conditions. Noble and Royle [43] proved the multiplicative version for
series-parallel graphs.

16



As we have seen the Tutte polynomial naturally extends to matroids with the
formula

TM(x, y) =
∑
S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S),

where r(S) is the rank of a set S ⊆ E. A loop in a matroid M is an element x ∈ E

such that r({x}) = 0, that is, {x} /∈ I, and a coloop is an element that is a loop
in the dual M∗ of the matroid M . Equivalently, a coloop is an element that is in
every base of M . For a cycle matroid MG loops correspond to loop edges, coloops
correspond to bridges in the graph G.

Hence it was suggested that the inequalities

max(TM(2, 0), TM(0, 2) ≥ TM(1, 1),

TM(2, 0) + TM(0, 2) ≥ 2TM(1, 1),

TM(2, 0)TM(0, 2) ≥ TM(1, 1)2

may hold true for all matroids M without loops and coloops. (These versions ap-
pear explicitly in [26], but were treated much earlier without explicitly calling them
conjectures.) Note that for general matroids, all these versions are equivalent in the
following sense: if one of them is true for all matroids, then the others are also true
for all matroids. Applying the maximum version to M ∪M∗ with M∗ being the dual
of M leads to the multiplicative version of the conjecture.

Knauer, Martínez-Sandoval, and Ramírez Alfonsín [33] proved that the class of
lattice path matroids satisfy the multiplicative version. Ibañez, Merino and Ro-
dríguez [40] proved the maximum version for some families of graphs and matroids.
Chávez-Lomelí, Merino, Noble and Ramírez-Ibáñez [17] proved the additive version
for paving matroids without coloops. In fact, they showed that the polynomial
TM(x, 2−x) is convex on the interval [0, 2] for these matroids. Recently, Ferroni and
Schröter [26] proved the multiplicative version of the conjecture for split matroids.
Kung [34] proved the additive version for some special matroids based on their size
and rank. Jackson [31] proved that

TM(3, 0)TM(0, 3) ≥ TM(1, 1)2

for matroids without loops and coloops. He phrased it for graphs but he also noted
that his proof extends to matroids.

The aim of this short note is to give a counter-example for these inequalities for
general matroids.
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Theorem 4.1.1. There are infinitely many matroids M without loops and coloops
for which

TM(2, 0)TM(0, 2) < TM(1, 1)2.

In fact, we show the following slightly stronger result. Let x0 be the largest root
of the polynomial x3 − 9(x− 1). We have x0 ≈ 2.22668...

Theorem 4.1.2. Let 0 ≤ x < x0, then there are infinitely many matroids M without
loops and coloops for which

TM(x, 0)TM(0, x) < TM(1, 1)2.

It is interesting to compare this result with the above inequality of Jackson. In
the paper [5], the authors show that 3 can be improved to 2.9243.

4.2 Counter-examples*

The counter-example for the multiplicative version of the Merino–Welsh conjecture
is surprisingly simple. Let Un,r be the uniform matroid on n elements with rank r.
Let U

(2)
n,r be the 2-thickening of Un,r, that is, we replace each element of Un,r with 2

parallel elements. We will show that if x < x0, then Mn = U
(2)

n, 2
3
n

satisfies the theorem
for large enough n if n is divisible by 3, hence concluding Theorems 4.1.2 and 4.1.1.

The computation of the Tutte polynomial of U (2)
n,r relies on two well-known lem-

mas.

Lemma 4.2.1 (Formula (2.24) in [41]). The Tutte polynomial of the matroid Un,r is
the following:

TUn,r(x, y) =
r∑

i=1

(
n− i− 1

n− r − 1

)
xi +

n−r∑
j=1

(
n− j − 1

r − 1

)
yj

if 0 < r < n, and TUn,n(x, y) = xn and TUn,0(x, y) = yn.

Lemma 4.2.2 (Jaeger, Vertigan and Welsh [32]). Let M be a matroid, and let M (k)

be its k-thickening, that is, we replace each element of M with k parallel elements.
Then

TM(k)(x, y) = (yk−1 + yk−2 + · · ·+ 1)r(M)TM

(
yk−1 + yk−2 + · · ·+ y + x

yk−1 + yk−2 + · · ·+ y + 1
, yk
)
.
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In particular, we have
TM(2)(x, 0) = TM(x, 0),

TM(2)(0, x) = (x+ 1)r(M)TM

(
x

x+ 1
, x2

)
,

and
TM(2)(1, 1) = 2r(M)TM(1, 1).

Clearly, these expressions together with the exact formula for TUn,r(x, y) make the
computation of T

U
(2)
n,r
(x, y) very fast for specific values of n, r, x, y.

To prove Theorem 4.1.2, our next goal is to understand the exponential growth
of TUn,r(x, 0).

Lemma 4.2.3. Let r = nα and x > 1, then

TUn,r(x, 0) =

f(n) exp(nH(α)) if x < 1
α
,

f(n)(x(x− 1)α−1)n if x ≥ 1
α
,

where nK > f(n) > n−K for some fixed K, and H(α) = −α ln(α)− (1−α) ln(1−α).

Proof. We can determine the dominating term of TUn,r(x, 0) by comparing two neigh-
boring terms:(

n− i− 1

n− r − 1

)
xi ≥

(
n− i− 2

n− r − 1

)
xi+1 if and only if

n− i− 1

r − i
≥ x.

Hence,
(
n−i−1
n−r−1

)
xi is maximized at

⌈
xr−(n−1)

x−1

⌉
. If the right-hand side is negative, then

the dominating term is at i = 1 and
(

n−2
n−r−1

)
∼
(

n
n−r

)
∼ exp(nH(α)), where ∼ means

the estimation is valid up to some nK . When x = 1
α
, then exp(H(α)) = x(x− 1)α−1,

so we can assume that x ≥ 1
α

in the rest of the proof since then on the whole interval(
1, 1

α

)
we have TUn,r(x, 0) ∼ exp(nH(α)).

For the sake of simplicity, we carry out the estimation of the dominating term at

i =
xr − n

x− 1
=

xα− 1

x− 1
n

and we drop the integer part. All these changes affect our computation up to a term
n−K . In the forthcoming computation, we also estimate m! ∼

(
m
e

)m as the terms
√
2πm(1 + o(1)) can be integrated into f(n):(

n− i− 1

n− r − 1

)
xi ∼

(
n− i

n− r

)
xi
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∼
(
n−i
e

)n−i(
n−r
e

)n−r ( r−i
e

)r−ix
i

=

(
n
(
1− xα−1

x−1

))n(1−xα−1
x−1 )

(n(1− α))n(1−α)
(
n
(
α− xα−1

x−1

))n(α−xα−1
x−1 )

xi

=


(

x(1−α)
x−1

)x(1−α)
x−1

(1− α)1−α
(
1−α
x−1

) 1−α
x−1


n

xi

=
(
x

x(1−α)
x−1 (x− 1)α−1

)n
xi

=
(
x

x(1−α)
x−1 (x− 1)α−1

)n
x

xα−1
x−1

n

= (x(x− 1)α−1)n,

and the result follows.

Lemma 4.2.4. Let r = αn and assume that x ≥ 1
α

and x2 ≥ 1
1−α

. Then for the
matroid M = U

(2)
n,r , we have

TM(1, 1)2

TM(x, 0)TM(0, x)
= g(n)

(
22α

α2α(1− α)2(1−α)
· x− 1

x3

)n

,

where nK > g(n) > n−K for some fixed K.

Proof. We have

TM(1, 1) = 2rTUn,r(1, 1)) = 2r
(
n

r

)
∼
(

2α

αα(1− α)1−α

)n

.

Furthermore,
TM(x, 0) = TUn,r(x, 0) ∼ (x(x− 1)α−1)n

as x ≥ 1
α
. Finally,

TM(0, x) = (x+1)rTUn,r

(
x

x+ 1
, x2

)
= (x+1)rTUn,r

(
x

x+ 1
, 0

)
+(x+1)rTUn,r

(
0, x2

)
.

Here, the second term will dominate the first one as TUn,r

(
x

x+1
, 0
)
< TUn,r(1, 1) ∼

exp(nH(α)), while

TUn,r

(
0, x2

)
= TUn,n−r(x

2, 0) ∼ (x2(x2 − 1)(1−α)−1)n
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as x2 ≥ 1
1−α

. Putting everything together, we get that

TM(1, 1)2

TM(x, 0)TM(0, x)
∼
(

22α

α2α(1− α)2(1−α)

)n

(x(x− 1)α−1(x+ 1)αx2(x2 − 1)−α)−n

∼
(

22α

α2α(1− α)2(1−α)
· x− 1

x3

)n

.

Proof of Theorem 4.1.2. The maximum of the function 22α

α2α(1−α)2(1−α) is at α = 2
3
,

where it takes value 9. We can assume by monotonicity that 2 ≤ x < x0. Then
x ≥ 1

α
= 3

2
and x2 ≥ 1

1−α
= 3, whence for M = U

(2)

n, 2
3
n
,we get that

TM(1, 1)2

TM(x, 0)TM(0, x)
≥ n−K

(
9(x− 1)

x3

)n

> 1

for large enough n as 9(x−1)
x3 > 1.

Remark 4.2.5. The matroid with the smallest number of elements that we are
aware of being a counter-example to the multiplicative version of the Merino–Welsh
conjecture is M = U

(2)
33,22 with 66 elements. For this matroid, we have TM(2, 0) =

8374746166, TM(0, 2) = 64127582356390782814, TM(1, 1) = 811751838842880, and

TM(2, 0)TM(0, 2)

TM(1, 1)2
≈ 0.815...
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5. Correlation Inequalities

5.1 Introduction

Once we have such a measure we can ask that certain events Q1, Q2 are correlated or
not, i. e., what the relation of Pµ(Q1 ∩Q2) and Pµ(Q1)Pµ(Q2) is. These are natural
questions from a probabilistic point of view and as we will see these questions are
also relevant for various other problems. For instance, knowing a certain correlation
inequality can predict what kind of extremal graph theoretic results might hold.

5.2 Positive correlation

Definition 5.2.1. For x, y ∈ {0, 1}n let x ∨ y be the vector for which (x ∨ y)i =

max(xi, yi), and let x ∧ y be the vector for which (x ∧ y)i = min(xi, yi).

Theorem 5.2.2 (Ahlswede and Daykin [3]). Let f1, f2, f3, f4 : {0, 1}n → R+ satis-
fying the inequality

f1(x)f2(y) ≤ f3(x ∨ y)f4(x ∧ y)

for all x, y ∈ {0, 1}n. Let
Fi =

∑
x∈{0,1}n

fi(x)

for i = 1, 2, 3, 4. Then
F1 · F2 ≤ F3 · F4.

Proof. We prove the statement by induction on n. For n = 1 the condition of the
theorem gives that

f1(0)f2(0) ≤ f3(0)f4(0).

f1(0)f2(1) ≤ f3(1)f4(0).

f1(1)f2(0) ≤ f3(1)f4(0).
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f1(1)f2(1) ≤ f3(1)f4(1).

We need to prove that

(f1(0) + f1(1))(f2(0) + f2(1)) ≤ (f3(0) + f3(1))(f4(0) + f4(1)).

If f3(1) = 0 or f4(0) = 0 then f3(1)f4(0) ≤ f3(0)f4(1) and the claim is trivially true:

(f1(0)+f1(1))(f2(0)+f2(1)) ≤ f3(0)f4(0)+2f3(1)f4(0)+f3(1)f4(1) ≤ (f3(0)+f3(1))(f4(0)+f4(1)).

So we can assume that f3(1) ̸= 0 and f4(0) ̸= 0. Then

(f3(0) + f3(1))(f4(0) + f4(1)) ≥
(
f1(0)f2(0)

f4(0)
+ f3(1)

)(
f4(0) +

f1(1)f2(1)

f3(1)

)
.

So it would be enough to prove that(
f1(0)f2(0)

f4(0)
+ f3(1)

)(
f4(0) +

f1(1)f2(1)

f3(1)

)
≥ (f1(0) + f1(1))(f2(0) + f2(1)).

This is equivalent with

(f1(0)f2(0)+f3(1)f4(0))(f3(1)f4(0)+f1(1)f2(1)) ≥ f3(1)f4(0)(f1(0)+f1(1))(f2(0)+f2(1)).

This is in turn equivalent with

(f3(1)f4(0)− f1(0)f2(1))(f3(1)f4(0)− f1(1)f2(0)) ≥ 0

which is true by the assumptions of the theorem. This proves the case n = 1.
Now suppose that the claim is true till n− 1 and we wish to prove it for n. Set

f ′
i(x) : {0, 1}n−1 → R+ for i = 1, 2, 3, 4 as follows:

f ′
i(x) = fi(x, 0) + fi(x, 1).

First we show that f ′
i satisfies the inequality

f ′
1(x)f

′
2(y) ≤ f ′

3(x ∨ y)f ′
4(x ∧ y)

for all x, y ∈ {0, 1}n−1. This is of course true: for a fixed x, y ∈ {0, 1}n−1 let us apply
the case n = 1 to the functions

g1(u) = f1(x, u) g2(u) = f2(y, u) g3(u) = f3(x ∨ y, u) g4(u) = f4(x ∧ y, u),
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where u ∈ {0, 1}. Then the functions gi satisfy

g1(u1)g2(u2) ≤ g3(u1 ∨ u2)g4(u1 ∧ u2)

for all u1, u2 ∈ {0, 1} by the assumption on f . By the case n = 1 we know that

(g1(0) + g1(1))(g2(0) + g2(1)) ≤ (g3(0) + g3(1))(g4(0) + g4(1)).

In other words,
f ′
1(x)f

′
2(y) ≤ f ′

3(x ∨ y)f ′
4(x ∧ y)

for all x, y ∈ {0, 1}n−1. Then by induction we get that for F ′
i =

∑
x∈{0,1}n−1 f ′

i(x) we
have

F ′
1 · F ′

2 ≤ F ′
3 · F ′

4.

But of course F ′
i = Fi whence

F1 · F2 ≤ F3 · F4.

Theorem 5.2.3. Let f1, f2, f3, f4 : {0, 1}n → R+ satisfying the inequality

f1(x)f2(y) ≤ f3(x ∨ y)f4(x ∧ y)

for all x, y ∈ {0, 1}n. Let f ′
1, f

′
2, f

′
3, f

′
4{0, 1}k → R+ be defined by

f ′
i(x) =

∑
u∈{0,1}n−k

fi(x, u).

Then for all x, y ∈ {0, 1}k we have

f ′
1(x)f

′
2(y) ≤ f ′

3(x ∨ y)f ′
4(x ∧ y)

Proof. This immediately follows from Theorem 5.2.2. For fixed x, y ∈ {0, 1}k define
g1, g2, g3, g4 : {0, 1}n−k → R+

g1(u) = f1(x, u), g2(u) = f2(y, u), g3(u) = f3(x ∨ y, u), g4(u) = f4(x ∧ y, u).

Then for any u, v ∈ {0, 1}n−k we have

g1(u)g2(v) ≤ g3(u ∨ v)g4(u ∧ v)
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by the assumption on the functions f1, f2, f3, f4. Then for

f ′
i(x) = Gi =

∑
u∈{0,1}n−k

gi(u) =
∑

u∈{0,1}n−k

fi(x, u)

we have
f ′
1(x)f

′
2(y) = G1G2 ≤ G3G4 = f ′

3(x ∨ y)f ′
4(x ∧ y).

Definition 5.2.4. For x, y ∈ {0, 1}n we say that x ≥ y if for all i ∈ [n] we have
xi ≥ yi.

A function f : {0, 1}n → R+ is monotone increasing if f(x) ≥ f(y) for all x ≥ y

and it is monotone decreasing if f(x) ≤ f(y) for all x ≥ y.
In general, for a poset (or lattice) L a function f : L → R+ is monotone increasing

if f(x) ≥ f(x) for all x ≥L y and it is monotone decreasing if f(x) ≤ f(y) for all
x ≥L y.

Theorem 5.2.5. A function µ : {0, 1}n → R+ is log-supermodular if

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y)

for all x, y ∈ {0, 1}n. Then for a log-supermodular µ : {0, 1}n → R+ and monotone
increasing (decreasing) functions f, g : {0, 1}n → R+ we have ∑

x∈{0,1}n
µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

Furthermore, if f : {0, 1}n → R+ is monotone increasing and g : {0, 1}n → R+ is
monotone decreasing then ∑

x∈{0,1}n
µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≥

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

Proof. First suppose that both f and g are monotone increasing. Let us apply
Theorem 5.2.2 for the following theorems:

f1(x) = µ(x)f(x), f2(x) = µ(x)g(x), f3(x) = µ(x)f(x)g(x), f4(x) = µ(x).

We need to check that

f1(x)f2(y) ≤ f3(x ∨ y)f4(x ∧ y)
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for all x, y ∈ {0, 1}n. This is indeed true:

f1(x)f2(y) = µ(x)f(x)µ(y)g(y)

≤ µ(x ∨ y)µ(x ∧ y)f(x)g(y)

≤ µ(x ∨ y)µ(x ∧ y)f(x ∨ y)g(x ∨ y)

= f3(x ∨ y)f4(x ∧ y).

In the first inequality we used the log-supermodularity of µ, and in the second in-
equality we used that both f and g are monotone increasing. Then by Theorem 5.2.2
we have F1 · F2 ≤ F3 ≤ F4, i. e., ∑

x∈{0,1}n
µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

If f and g are both monotone decreasing then set

f1(x) = µ(x)f(x), f2(x) = µ(x)g(x), f3(x) = µ(x), f4(x) = µ(x)f(x)g(x).

Again we need to check that

f1(x)f2(y) ≤ f3(x ∨ y)f4(x ∧ y)

for all x, y ∈ {0, 1}n. This is indeed true:

f1(x)f2(y) = µ(x)f(x)µ(y)g(y)

≤ µ(x ∨ y)µ(x ∧ y)f(x)g(y)

≤ µ(x ∨ y)µ(x ∧ y)f(x ∧ y)g(x ∧ y)

= f3(x ∨ y)f4(x ∧ y).

From this we can conclude again that ∑
x∈{0,1}n

µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

If f is monotone increasing, and g is monotone decreasing then let M = maxx∈{0,1}n g(x),
and consider the function g′(x) = M − g(x). Then g′(x) ≥ 0 and monotone increas-
ing. Whence ∑

x∈{0,1}n
µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g′(x)

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)g′(x)

 ∑
x∈{0,1}n

µ(x)

 .
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By writing the definition of g(x) = M − g′(x) into it we get that ∑
x∈{0,1}n

µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)(M − g(x))

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)(M − g(x))

 ∑
x∈{0,1}n

µ(x)

 .

After subtracting M(
∑

µ(x))(
∑

µ(x)f(x)) and multiplying with −1 we get that ∑
x∈{0,1}n

µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≥

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

Theorem 5.2.6. Let L be a distributive lattice. A function µ : L → R+ is log-
supermodular if

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y)

for all x, y ∈ L. For a log-supermodular µ : L → R+ and monotone increasing
(decreasing) functions f, g : L → R+we have(∑

x∈L

µ(x)f(x)

)(∑
x∈L

µ(x)g(x)

)
≤

(∑
x∈L

µ(x)f(x)g(x)

)(∑
x∈L

µ(x)

)
.

Furthermore, if f : L → R+ is monotone increasing and g : L → R+ is monotone
decreasing then(∑

x∈L

µ(x)f(x)

)(∑
x∈L

µ(x)g(x)

)
≥

(∑
x∈L

µ(x)f(x)g(x)

)(∑
x∈L

µ(x)

)
.

Proof. This theorem follows from Theorem 5.2.5 since every distributive lattice L is
a sublattice of some {0, 1}n. So all we need to do is to define µ on {0, 1}n \L to be 0,
and to extend f and g in a monotone increasing way. (This last step is only needed
formally since µ(x)f(x), µ(x)g(x), µ(x)f(x)g(x) are all 0 anyway for x ∈ {0, 1}n \L.)
The extended µ will remain log-supermodular since µ(x)µ(y) ̸= 0 then x, y ∈ L and
then x ∨ y, x ∧ y ∈ L so µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y), and if µ(x)µ(y) = 0 then the
inequality holds true trivially.

In the next few results we give examples of various log-supermodular measures.

Theorem 5.2.7. Assume that the function µ : {0, 1}n → R+ is log-supermodular.
Then the function µ′ : {0, 1}k → R+ defined by

µ′(x) =
∑

u∈{0,1}n−k

µ(x, u)

is also log-supermodular.
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Proof. This theorem is an immediate application of Theorem 5.2.3 applied to
f1 = f2 = f3 = f4 = µ.

Theorem 5.2.8. For probabilities p1, . . . , pn let

Pp(A) =
∏
i∈A

pi
∏
j /∈A

(1− pj).

Let A,B ⊆ 2[n] be monotone increasing, and C,D ⊆ 2[n] be monotone decreasing set
families. For a set family S set

Pp(S) =
∑
S∈S

Pp(S).

Then we have
Pp(A ∩ B) ≥ Pp(A) · Pp(B),

Pp(C ∩ D) ≥ Pp(C) · Pp(D),

Pp(A ∩ C) ≤ Pp(A) · Pp(C).

Proof. We can associate the characteristic vector 1A ∈ {0, 1}n with a set A. Let

µ(x) =
n∏

i=1

pxi
i (1− pi)

1−xi .

Then Pp(A) = µ(1A). Then

µ(x)µ(y) = µ(x ∨ y)µ(x ∧ y)

or equivalently Pp(A)Pp(B) = Pp(A ∪ B)Pp(A ∩ B). Furthermore, let f be the
characteristic functions of the family of sets A, i. e., f(1A) = 1 if A ∈ A and 0

otherwise. Similarly, let g be the characteristic functions of the family of sets B.
Then f and g are monotone increasing functions. The inequality

Pp(A ∩ B) ≥ Pp(A) · Pp(B)

is simply Theorem 5.2.5 applied to µ, f and g. The other parts of the theorem follows
similarly.

28



6. Permutation Tutte polynomial

6.1 Introduction

The aim of this chapter is to introduce an auxiliary polynomial that helps studying
the Tutte polynomial and has properties that make it interesting even on its own.
We call this new polynomial the permutation Tutte polynomial. It is defined for every
bipartite graph.

Definition 6.1.1. Let H = (A,B,E) be a bipartite graph. Suppose that V (H) =

[m]. For a permutation π : [m] → [m], we say that a vertex i ∈ A is internally active
if

π(i) > max
j∈NH(i)

π(j).

Similarly, we say that vertex j ∈ B is externally active if

π(j) > max
i∈NH(j)

π(i).

Let ia(π) and ea(π) be the number of internally and externally active vertices in A

and B, respectively. Let

T̃H(x, y) =
1

m!

∑
π∈Sm

xia(π)yea(π).

We will call T̃H(x, y) the permutation Tutte polynomial of H.

Example 6.1.2. Let H = P5 be the path on 5 vertices where A consists of 3, B
consists of 2 vertices, respectively. The permutation Tutte polynomial of it is the
following.

1 x x2 x3

1 1
15

4
15

2
15

y 1
15

1
3

y2 2
15
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This also satisfies Brylawski’s identities: for instance, we can see that t10 = t01 =
1
15

and t20 − t11 + t01 = 2
15

− 1
3
+ 4

15
= 1

15
= t10. For bipartite graphs without isolated

vertices it is also true that ta,0 = t0,b, in our example t30 = t02 =
2
15

Example 6.1.3. The permutation Tutte polynomial of the cube graph is the fol-
lowing.

1 x x2 x3 x4

1 3
28

5
28

1
14

1
56

y 3
28

1
4

y2 5
28

y3 1
14

y4 1
56

The motivation behind Definition 6.1.1 comes from the characterisation of the
Tutte polynomial via edge activities. In order to explain the connection between
TG(x, y) and T̃H(x, y), recall the concept of the local basis exchange graph.

For a fixed labeling of the edges of G, we get a labeling of the vertices of H[T ],
and the internally (externally) active edges of G correspond to internally (externally)
active vertices of H[T ], so the two definitions of internal and external activity are
compatible. Taking all permutations of the edge labels and averaging out will corre-
spond to averaging out the constant TG(x, y) on the level of G, and will lead to the
definition of T̃H[T ](x, y). This gives the identity

TG(x, y) =
∑

T∈T (G)

T̃H[T ](x, y),

where the summation goes for all spanning trees of G (see Lemma 6.3.1 for fur-
ther details). This identity is the starting point of several proofs of our theorems
concerning the Tutte polynomial.

Jackson [31] proved the inequality:

TG(3, 0)TG(0, 3) ≥ TG(1, 1)
2

for every graph G without loops and bridges. In this chapter we show that

T̃H(3, 0)T̃H(0, 3) ≥ T̃H(1, 1)
2

holds true for every bipartite graph H without isolated vertices, and this inequal-
ity implies Jackson’s inequality (see transfer lemma, Lemma 6.3.3). This proof is
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completely different from the original proof of Jackson’s inequality. The proof uses
the FKG-inequality, and relies on the fact that permutations on m elements can be
generated by simply ordering m random numbers chosen uniformly from [0, 1]. This
idea is the heart of several inequalities for T̃H(x, y), and this is the key advantage of
T̃H(x, y) over TG(x, y).

We have seen that the Merino–Welsh conjecture is not true for all matroids
[4], implying that T̃H(2, 0)T̃H(0, 2) ≥ T̃H(1, 1)

2 is not true for all bipartite graphs
without isolated vertices. Nevertheless, there are several graph classes for which
T̃H(2, 0)T̃H(0, 2) ≥ T̃H(1, 1)

2 holds true, including complete bipartite graphs, regular
bipartite graphs and trees. One can also improve on Jackson’s inequality by showing
that T̃H(x, 0)T̃H(0, x) ≥ T̃H(1, 1)

2 for every bipartite graph without isolated vertices
if x ≥ 2.9243. By the transfer lemma, this implies that TG(x, 0)TG(0, x) ≥ TG(1, 1)

2

for every graph G without loops and bridges (and matroids without loops and
coloops).

6.2 Basic recursions

In this section, we establish several basic recursions for the permutation Tutte poly-
nomial that we will use subsequently. The following lemmas are trivial.

Lemma 6.2.1. If H is the disjoint union of H1 and H2, then

T̃H(x, y) = T̃H1(x, y)T̃H2(x, y).

In particular, if v ∈ A is an isolated vertex, then

T̃H(x, y) = xT̃H−v(x, y).

Similarly, if v ∈ B is an isolated vertex, then

T̃H(x, y) = yT̃H−v(x, y).

Lemma 6.2.2. For a bipartite graph H = (A,B,E), let H ′ = (B,A,E) be the graph
obtained by switching the two sides of H. Then

T̃H(x, y) = T̃H′(y, x).
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Lemma 6.2.3. If H is a bipartite graph on m vertices that does not contain isolated
vertices, then

T̃H(x, y) =
1

m

∑
v∈V (H)

T̃H−v(x, y).

Proof. For π ∈ Sm, let v(π) be the vertex of H such that π(v(π)) = 1. Let α(π)

be the permutation of V (H − v(π)) where α(x) < α(y) iff π(x) < π(y). Then a
vertex is internally (externally) active in α if and only if it is internally (externally)
active in π, since v(π) cannot be active as v(π) is not isolated. Therefore iaH(π) =

iaH−v(π)(α(π)) and eaH(π) = eaH−v(π)(α(π)). As π runs through Sm, we remove each
vertex v ∈ V (H) exactly (m−1)! times and get each permutation α of Sym ([m]\{v})
exactly once, so

T̃H(x, y) =
1

m!

∑
π∈Sm

xiaH(π)yeaH(π)

=
1

m!

∑
π∈Sm

xiaH−v(π)(α(π))yeaH−v(π)(α(π))

=
1

m!

∑
v∈V (H)

∑
α∈Sym([m]\{v})

xiaH−v(α)yeaH−v(α)

=
1

m

∑
v∈V (H)

T̃H−v(x, y).

6.3 Connection with the Tutte polynomial

In this section, we establish the main connection between the Tutte polynomial
and the permutation Tutte polynomial. This connection will enable us to transfer
linear identities and inequalities from the permutation Tutte polynomial to the Tutte
polynomial.

Lemma 6.3.1. Let G be a graph. For each spanning tree T of G, let H[T ] be the
local basis exchange graph with respect to T . Then

TG(x, y) =
∑

T∈T (G)

T̃H[T ](x, y),

where the sum is over the set of spanning trees T (G) of G.
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Proof. For a fixed spanning tree T and a permutation π of the edges, the internally
and externally active edges correspond to the internally and externally active vertices
of H[T ]. Hence

TG(x, y) =
∑

T∈T (G)

xiaH[T ](π)yeaH[T ](π).

Now averaging it for all permutations π ∈ Sm we get that

TG(x, y) =
1

m!

∑
π∈Sm

TG(x, y)

=
1

m!

∑
π∈Sm

∑
T∈T (G)

xiaH[T ](π)yeaH[T ](π)

=
∑

T∈T (G)

1

m!

∑
π∈Sm

xiaH[T ](π)yeaH[T ](π)

=
∑

T∈T (G)

T̃H[T ](x, y).

Remark 6.3.2. The local basis exchange graph H[T ] has an isolated vertex if and
only if G contains a bridge or a loop. Furthermore, H[T ] is connected if and only G

is 2-connected.

The following lemma enables us to study Conde-Merino-Welsh type inequalities.

Lemma 6.3.3 (Transfer lemma). Let x0, x1, x2, y0, y1, y2 ≥ 0. Suppose that for any
bipartite graph H, we have

T̃H(x1, y1)T̃H(x2, y2) ≥ T̃H(x0, y0)
2.

Then for any graph G, we have

TG(x1, y1)TG(x2, y2) ≥ TG(x0, y0)
2.

More generally, if for x0, x1, . . . , xn, y0, y1, . . . , yn ≥ 0 and α1, . . . , αn ≥ 0 satisfying∑n
k=1 αk = 1, the inequality

n∏
k=1

T̃H(xk, yk)
αk ≥ T̃H(x0, y0)

holds true for every bipartite graph H, then for every graph G, we have
n∏

k=1

TG(xk, yk)
αk ≥ TG(x0, y0).
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Proof. We have

TG(x1, y1)TG(x2, y2) =

 ∑
T∈T (G)

T̃H[T ](x1, y1)

 ∑
T∈T (G)

T̃H[T ](x2, y2)


≥

 ∑
T∈T (G)

(
T̃H[T ](x1, y1)T̃H[T ](x2, y2)

)1/22

≥

 ∑
T∈T (G)

T̃H[T ](x0, y0)

2

= TG(x0, y0)
2.

The first and last equality are the applications Lemma 6.3.1. The first inequality is
a Cauchy–Schwarz inequality applied to the numbers T̃H[T ](x1, y1)

1/2, T̃H[T ](x2, y2)
1/2

for T ∈ T (G). This is where we use that x1, x2, x3, y1, y2, y3 ≥ 0 to ensure that we
can consider the square roots. The second inequality is simply the condition of the
lemma.

The proof of the more general statement follows the same way, the only difference
is that Cauchy–Schwarz inequality we have to use the following version of Hölder’s
inequality:

n∏
k=1

(
M∑
j=1

akj

)αk

≥
M∑
j=1

n∏
k=1

aαk
kj .

6.4 Applications of the FKG-inequality

In this section, we show the advantage of T̃H(x, y) over TG(x, y) in proving Conde-
Merino-Welsh-type inequalities.

Let us immediately give two inequalities as motivations.

Lemma 6.4.1. Let H be an arbitrary bipartite graph. Suppose that 0 ≤ x ≤ 1 and
y ≥ 1 or 0 ≤ y ≤ 1 and x ≥ 1. Then

T̃H(x, y)T̃H(1, 1) ≥ T̃H(x, 1)T̃H(1, y).

If both x, y ≥ 1 or both 0 ≤ x, y ≤ 1, then

T̃H(x, y)T̃H(1, 1) ≤ T̃H(x, 1)T̃H(1, y).
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Note that T̃H(1, 1) = 1, so it appears in the lemma only for aesthetic reasons.

Lemma 6.4.2. Let H be an arbitrary bipartite graph, and let di be the degree of a
vertex i. Suppose that 0 ≤ x ≤ 1 and y ≥ 1 or 0 ≤ y ≤ 1 and x ≥ 1. Then

T̃H(x, y) ≥
∏
i∈A

(
1 +

x− 1

di + 1

)
·
∏
j∈B

(
1 +

y − 1

dj + 1

)
.

To prove Lemma 6.4.1 and 6.4.2, we need the following form of the FKG-inequality
[27].

Lemma 6.4.3 (Fortuin, Kasteleyn, Ginibre [27]). Suppose that µ is the uniform
measure on [0, 1]N , and X1, . . . , Xt are non-negative monotone increasing functions
in the sense that if xi ≥ x′

i for i = 1, . . . , N , then for 1 ≤ j ≤ t we have

Xj(x1, . . . , xn) ≥ Xj(x
′
1, . . . , x

′
n).

Then

Eµ

[
t∏

j=1

Xj

]
≥

t∏
j=1

Eµ[Xj].

Furthermore, if X is monotone increasing and Y is monotone decreasing, then

E[XY ] ≤ E[X]E[Y ].

Remark 6.4.4. The above special case of the FKG-inequality might be non-standard,
because it is mostly stated for finite distributive lattices, but [0, 1]N can be approx-
imated by the finite distributive lattices

{
0, 1

M
, 2
M
, . . . , 1

}N , so the above version
follows from the usual versions. It can also be proved by induction on n by repeat-
edly using the case t = 2, n = 1, which is just Chebyshev’s inequality.

In what follows, we repeatedly use the same idea to express T̃H(x, y). This is a
crucial idea.

We can create a random ordering of the vertices of H as follows: for each vertex i

we choose a uniform random number xi from the interval [0, 1]. The numbers xi then
determine an ordering of the edges. The probability that two numbers are equal is
0. For j ∈ B we actually first generate a uniformly random number yj from [0, 1]

and let yj = 1− xj. This trick makes some argument more convenient.
For i ∈ A, let us introduce the random variable

Xi(xi, {yj}j∈B) =

{
x if maxj∈NH(i)(1− yj) ≤ xi,

1 if maxj∈NH(i)(1− yj) > xi.
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and for j ∈ B, let

Yj({xi}i∈A, yj) =

{
y if maxi∈NH(j) xi ≤ 1− yj,

1 if maxi∈NH(j) xi ≥ 1− yi.

Since we simply generated a uniform random ordering of the vertices, we get that

T̃H(x, y) = E

[∏
i∈A

Xi ·
∏
j∈B

Yj

]
.

Now observe that if x ≥ 1, then Xi is a monotone increasing function, and if x ≤ 1,
then it is a monotone decreasing function of (xi)i∈A, (yj)j∈B. Indeed, if it was true
that maxj∈NH(i)(1− yj) ≤ xi, then this inequality remains true if we increase xi and
yj. So Xi is monotone increasing if x ≥ 1, and decreasing if 0 ≤ x ≤ 1. In case of
j ∈ B, we get that Yj is increasing if 0 ≤ y ≤ 1 and decreasing if y ≥ 1.

Now we are ready to prove Lemma 6.4.1 and 6.4.2.

Proof of Lemma 6.4.1. If x ≥ 1 and 0 ≤ y ≤ 1, then
∏

i∈AXi and
∏

j∈B Yj are both
monotone increasing random variables. Hence

T̃H(x, y) = E

[∏
i∈A

Xi ·
∏
j∈B

Yj

]
≥ E

[∏
i∈A

Xi

]
· E

[∏
j∈B

Yj

]
= T̃H(x, 1)T̃H(1, y).

The other inequalities follow the same way.

Proof of Lemma 6.4.2. We have

E[Xi] =

(
1− 1

di + 1

)
+

x

di + 1
= 1 +

x− 1

di + 1
,

and
E[Yj] =

(
1− 1

dj + 1

)
+

y

dj + 1
= 1 +

y − 1

dj + 1
.

Note that Xi and Yj are monotone increasing functions in terms of the variables
{xi}i∈A and {yj}j∈B if x ≥ 1 and 0 ≤ y ≤ 1, and they are monotone decreasing
functions in terms of the variables {xi}i∈A and {yj}j∈B if 0 ≤ x ≤ 1 and y ≥ 1.
Hence, by the FKG-inequality, we have

T̃H(x, y) = E

[∏
i∈A

Xi ·
∏
j∈B

Yj

]
≥
∏
i∈A

E[Xi]·
∏
j∈B

E[Yj] =
∏
i∈A

(
1 +

x− 1

di + 1

)
·
∏
j∈B

(
1 +

y − 1

dj + 1

)
.
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An interesting application of the above inequalities is the following. (This in-
equality is particularly useful if one studies graphs with large girth, and a variant of
this inequality was used in the paper [6].)

Theorem 6.4.5. Suppose that a graph G has n vertices, m edges and the length of
the shortest cycle is g. Then

TG(x, 0) ≥ TG(x, 1)

(
1− 1

g

)m−n+1

.

Proof. For any spanning tree T the local basis exchange graph H = H[T ] has min-
imum degree g − 1 on the side of the non-spanning-tree edges. This means that if
x ≥ 1, we have

T̃H(x, 0) ≥ T̃H(x, 1)T̃H(1, 0) ≥ T̃H(x, 1)
∏
j∈B

(
1− 1

dj + 1

)
≥ T̃H(x, 1)

(
1− 1

g

)m−n+1

.

By summing this inequality for all spanning trees, we get that

TG(x, 0) ≥ TG(x, 1)

(
1− 1

g

)m−n+1

.

Another application gives a fast proof of Jackson’s theorem.

Theorem 6.4.6. Let H be a bipartite graph with minimum degree δ ≥ 1. Then

T̃H

(
2 +

1

δ
, 0

)
T̃H

(
0, 2 +

1

δ

)
≥ T̃H(1, 1)

2.

In particular, we have
T̃H(3, 0)T̃H(0, 3) ≥ T̃H(1, 1)

2.

Let G be a graph without loops and bridges. Then

TG(3, 0)TG(0, 3) ≥ TG(1, 1)
2.

Proof. Let x = 2 + 1
δ
. Let us use that T̃H(1, 1) = 1,

T̃H(x, 0) ≥
∏
i∈A

(
1 +

x− 1

di + 1

)
·
∏
j∈B

(
1− 1

dj + 1

)
,

and
T̃H(0, x) ≥

∏
i∈A

(
1− 1

di + 1

)
·
∏
j∈B

(
1 +

x− 1

dj + 1

)
.
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So it is enough to prove that(
1 +

x− 1

dv + 1

)(
1− 1

dv + 1

)
≥ 1

if dv is the degree of a vertex v. The inequality (1+(x−1)ε)(1−ε) ≥ 1 is equivalent
with (x − 2)ε ≥ (x − 1)ε2, that is, ε ≤ x−2

x−1
= 1

δ+1
which is satisfied since dv ≥ δ

for all vertex v ∈ V (H). The second inequality follows from the first one by simply
taking δ = 1. The third inequality follows from the second one by Lemma 6.3.3.
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Part II

Limits of Tutte polynomials

39



7. Limits of Tutte polynomials:
general plan

In the second part of this course we aim to study the following problem. Given a
“converging” graph sequence (Gn)n what is the limit

lim
n→∞

TGn(x, y)
1/v(Gn),

does it exist at all? To make this question rigorous we will later introduce the concept
of the Benjamini–Schramm convergence.

Unfortunately, it turns out that our knowledge is very limited about this question.
Even if we consider larger and larger grids we only know the limit value if x = 1, y = 1

or (x− 1)(y− 1) ∈ {1, 2}. But at least in this case we know that the limit exists for
all x, y ≥ 0.

We will study another case when Gn are d-regular graphs converging to the infinite
d-regular tree. This special case can be imagined as follows: we consider graphs that
do not contain short cycles, in fact, as n grows, the length of the shortest cycle in
Gn is longer and longer. In this special case we do not know that the limit exists
for all x, y ≥ 0, but it is widely believed so. Nevertheless we will prove the existence
of the limit and compute it explicitly in two different regions. The first region is
when x ≥ 1 and 0 ≤ y ≤ 1, the second region consists of the points (x, y) satisfying
(x − 1)(y − 1) ≥ 2 and x, y > 1. While the proofs in the two regions are different,
the underlying ideas follow the same pattern. In both cases we first “approximate”
the Tutte polynomial with another graph polynomial, then use the special properties
of the approximating polynomial to deduce the existence of the limit and compute
it precisely. The aforementioned special property is the special locus of zeros of the
graph polynomial: in the first case they are real, in the second case they will be of
unit length.
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Figure 7.1: The two regions. Here q = (x− 1)(y− 1) and the dashed line depicts the
phase transition.

Region 1 Region 2
Description x ≥ 1 and 0 ≤ y ≤ 1 (x− 1)(y − 1) ≥ 2 and x, y > 1

Approximating polynomial Matching polynomial Subgraph counting polynomial
Locus of zeros Real line Unit circle
Limit value Theorem 1 Theorem 2

Below we give the exact theorems for the two regions.

Theorem 1. (Region 1) Let x ≥ 1 and 0 ≤ y ≤ 1. Let d ≥ 2, and let (Gn)n be a
sequence of d-regular graphs such that limn→∞ g(Gn) = ∞. Then

lim
n→∞

TGn(x, y)
1/v(Gn) = td(x, y),

where

td(x, y) =

 (d− 1)
(

(d−1)2

(d−1)2−x

)d/2−1

if x ≤ d− 1 and 0 ≤ y ≤ 1,

x
(
1 + 1

x−1

)d/2−1 if x > d− 1 and 0 ≤ y ≤ 1.
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If (Gn)n is a sequence of random d-regular graphs, then the same statement holds
true asymptotically almost surely. In fact, if L(G, g) denotes the number of cycles of
length at most g − 1 in a graph G, then the same conclusion holds if for every fixed
g we have limn→∞

L(Gn,g)
v(Gn)

= 0.

In case of region 2 it is better to use the parameterization q = (x− 1)(y− 1) and
w = y− 1 and the partition function ZG(q, w) =

∑
A⊆E qk(A)w|A| instead of TG(x, y).

Theorem 2. (Region 2) Let (Gn)n be a sequence of d-regular graphs such that
limn→∞ g(Gn) = ∞. Then the limit

lim
n→∞

ZGn(q, w)
1/v(Gn) = Φd,q,w

exists for q ≥ 2 and w ≥ 0. The quantity Φd,q,w can be computed as follows. Let

Φd,q,w(t) :=

(√
1 +

w

q
cos(t) +

√
(q − 1)w

q
sin(t)

)d

+(q−1)

(√
1 +

w

q
cos(t)−

√
w

q(q − 1)
sin(t)

)d

,

then Φd,q,w := maxt∈[−π,π] Φd,q,w(t).

If (Gn)n is a sequence of random d-regular graphs, then the same statement holds
true asymptotically almost surely. In fact, if L(G, g) denotes the number of cycles of
length at most g − 1 in a graph G, then the same conclusion holds if for every fixed
g we have limn→∞

L(Gn,g)
v(Gn)

= 0.

In both theorems there is a phase transition. This is apparent in Theorem 1,
where the phase transition is at x = d− 1. In Theorem 2 there is a phase transition
at

wc(d, q) =
q − 2

(q − 1)1−2/d − 1
− 1.

For w ≤ wc(d, q) we have Φd,q,w = Φd,q,w(0) = q
(
1 + w

q

)d/2
, and for w > wc(d, q)

we have Φd,q,w > q
(
1 + w

q

)d/2
. Moreover, if q > 2, then ∂

∂w
Φd,q,w is discontinuous at

wc(q), that is, there is a first order phase transition at wc(q).

In this lecture note we will give the proof of Theorem 1, and we also give a lot of
ingredients and the sketch of the proof or Theorem 2. Furthermore, we present the
proof of a slightly easier theorem about the number of Eulerian orientations.
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8. Matching polynomial

8.1 Introduction

Definition 8.1.1. Let G be a graph on v(G) = n vertices and let mk(G) denote the
number of matchings of size k. Then the matching polynomial µ(G, x) is defined as
follows:

µ(G, x) =

⌊v/2⌋∑
k=0

(−1)kmk(G)xn−2k.

Note that m0(G) = 1. Another way to define µ(G, x) is the following:

µ(G, x) =
∑

M∈M(G)

(−1)|M |xn−2|M |.

Sometimes it will be more convenient to work with the so-called matching generating
function

M(G, λ) =

⌊v/2⌋∑
k=0

mk(G)λk.

This is also the partition function of the monomer-dimer model at fugacity λ.

Clearly, the matching polynomial and the matching generating function encode
the same information.

Proposition 8.1.2 ([30, 28]). (a) Let u ∈ V (G) then

µ(G, x) = xµ(G− u, x)−
∑

v∈N(u)

µ(G− {u, v}, x).

(b) For e = (u, v) ∈ E(G) we have

µ(G, x) = µ(G− e, x)− µ(G− {u, v}, x).

(c) For G = G1 ∪G2 ∪ · · · ∪Gk we have

µ(G, x) =
k∏

i=1

µ(Gi, x).
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(d) We have
µ′(G, x) =

∑
u∈V (G)

µ(G− u, x).

Proof. (a) By comparing the coefficient of xn−2k we need to prove that

mk(G) = mk(G− u) +
∑

v∈N(u)

mk−1(G− {u, v}).

This is indeed true since we can count the number of k-matchings of G as follows:
there mk(G− u) k-matchings which do not contain u, and if a k-matching contains
u then there is a unique v ∈ N(u) such that the edge (u, v) is in the matching, and
the remaining k − 1 edges are chosen from G− {u, v}.

(b) By comparing the coefficient of xn−2k we need to prove that

mk(G) = mk(G− e) +mk−1(G− {u, v}).

This is indeed true since the number of k-matchings not containing e is mk(G− e),
and the number of k-matchings containing e = (u, v) is mk−1(G− {u, v}).

(c) It is enough to prove the claim when G = G1 ∪G2, for more components the
claim follows by induction. By comparing the coefficient of xn−2k we need to prove
that

mk(G) =
k∑

r=0

mr(G1)mk−r(G2).

This is indeed true since a k-matching fof G uniquely determine an r-matching of
G1 and a (k − r)-matching of G2 for some 0 ≤ r ≤ k.

(d) This follows from the fact that

(mk(G)xn−2k)′ = (n− 2k)mk(G)xn−1−2k =
∑

u∈V (G)

mk(G− u)xn−1−2k

since we can compute the cardinality of the set

{(M,u) | u /∈ V (M), |M | = k}

in two different ways.

Theorem 8.1.3 (Heilmann and Lieb [30]). All zeros of the matching polynomial
µ(G, x) are real.
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Proof. We will prove the following two statements by induction on the number of
vertices.

(i) All zeros of µ(G, x) are real.

(ii) For an x with Im(x) > 0 we have

Im
µ(G, x)

µ(G− u, x)
> 0

for all u ∈ V (G).

Note that in (ii) we already use the claim (i) inductively, namely that µ(G−u, x)

doesn’t vanish for an x with Imx > 0. On the other hand, claim (ii) for G implies
claim (i). So we need to check claim (i).

By the recursion formula we have

µ(G, x)

µ(G− u, x)
=

xµ(G− u, x)−
∑

v∈N(u) µ(G− {u, v}, x)
µ(G− u, x)

= x−
∑

v∈N(u)

µ(G− {u, v}, x)
µ(G− u, x)

.

By induction we have

Im
µ(G− u, x)

µ(G− {u, v}, x)
> 0

for Im(x) > 0. Hence

−Im
µ(G− {u, v}, x)
µ(G− u, x)

> 0

which gives that

Im
µ(G, x)

µ(G− u, x)
> 0.

Remark 8.1.4. One can also deduce from this proof that the zeros of µ(G, x) and
µ(G − u, x) interlace each other just like the zeros of a real-rooted polynomial and
its derivative.

Definition 8.1.5. Let G be graph with a given vertex u. The path-tree T (G, u) is
defined as follows. The vertices of T (G, u) are the paths1 in G which start at the
vertex u and two paths joined by an edge if one of them is a one-step extension of
the other.

1In statistical physics, paths are called self-avoiding walks.
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Figure 8.1: A path-tree from the vertex 1.

Proposition 8.1.6. Let G be a graph with a root vertex u. Let T (G, u) be the cor-
responding path-tree in which the root is again denoted by u for sake of convenience.
Then

µ(G− u, x)

µ(G, x)
=

µ(T (G, u)− u, x)

µ(T (G, u), x)
,

and µ(G, x) divides µ(T (G, u), x). In fact,

µ(T (G, u), x) = µ(G, x)
∏
H

µ(H, x)αH ,

where H are induced subgraphs of G, and αH is some non-negative integer.

Proof. The proof of this proposition is again by induction using part (a) of Proposi-
tion 8.1.2. Indeed,

µ(G, x)

µ(G− u, x)
=

xµ(G− u, x)−
∑

v∈N(u) µ(G− {u, v}, x)
µ(G− u, x)

=

= x−
∑

v∈N(u)

µ(G− {u, v}, x)
µ(G− u, x)

= x−
∑

v∈N(u)

µ(T (G− u, v)− v, x)

µ(T (G− u, v), x)

= x

∏
v∈N(u) µ(T (G− u, v), x)−

∑
v∈N(u) µ(T (G− u, v)− v, x)

∏
v′∈N(u)\{v} µ(T (G− u, v′), x)∏

v∈N(u) µ(T (G− u, v), x)

=
xµ(T (G, u)− u, x)−

∑
v∈N(u) µ(T (G, u)− {u, v}, x)

µ(T (G, u)− u, x)
=

µ(T (G, u), x)

µ(T (G, u)− u, x)
.

In the first step we used the recursion formula, and in the third step we used the
induction step to the graph G − u and root vertex v. Here it is an important
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observation that T (G− u, v) is exactly the branch of the tree T (G, u) that we get if
we delete the vertex u from T (G, u) and consider the subtree rooted at the path uv.

The second part of the claim follows by induction using

µ(T (G, u), x) = µ(G, x)
µ(T (G, u)− u, x)

µ(G− u, x)

together with the observation that a connected component of T (G, u)−u, say rooted
at the vertex uv, is path-tree of G− u with root vertex v.

Proposition 8.1.7 ([30, 28]). For a forest T , the matching polynomial µ(T, x) co-
incides with the characteristic polynomial φ(T, x) = det(xI − AT ).

Proof. Indeed, when we expand the det(xI − A) we only get non-zero terms when
the cycle decomposition of the permutation consists of cycles of length at most 2;
but these terms correspond to the terms of the matching polynomial.

Remark 8.1.8. Clearly, Propositions 8.1.6 and 8.1.7 together give a new proof
of the Heilmann-Lieb theorem since µ(G, x) divides µ(T (G, u), x) = φ(T (G, u), x)

whose zeros are real since they are the eigenvalues of a symmetric matrix.

Proposition 8.1.9 ([30, 28]). If the largest degree ∆ is at least 2, then all zeros of
the matching polynomial lie in the interval [−2

√
∆− 1, 2

√
∆− 1].

First proof. First we show that if u is a vertex of degree at most ∆− 1, then for any
x ≥ 2

√
∆− 1 we have

µ(G, x)

µ(G− u, x)
≥

√
∆− 1.

We prove this statement by induction on the number of vertices. This is true if
G = K1, so we can assume that v(G) ≥ 2. Then

µ(G, x)

µ(G− u, x)
=

xµ(G− u, x)−
∑

v∈NG(u) µ(G− {u, v}, x)
µ(G− u, x)

= x−
∑

v∈NG(u)

µ(G− {u, v}, x)
µ(G− u, x)

≥ x− (∆− 1)
1√

∆− 1
≥

√
∆− 1.

We used the fact that v ∈ NG(u) has degree at most ∆− 1 in the graph G− u.
Then for any vertex u we have

µ(G, x)

µ(G− u, x)
=

xµ(G− u, x)−
∑

v∈NG(u) µ(G− {u, v}, x)
µ(G− u, x)
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= x−
∑

v∈NG(u)

µ(G− {u, v}, x)
µ(G− u, x)

≥ x−∆
1√

∆− 1
> 0

since v ∈ NG(u) has degree at most ∆−1 in the graph G−u. This shows µ(G, x) ̸= 0

if x ≥ 2
√
∆− 1. Since the zeros of the matching polynomial are symmetric to 0 we

get that all zeros lie in the interval (−2
√
∆− 1, 2

√
∆− 1).

Second proof. By Propositions 8.1.6 and 8.1.7 we know that µ(G, x) divides
µ(T (G, u), x) = φ(T (G, u), x). The largest degree of T (G, u) is also at most ∆ so
we have ρ1(T (G, u)) ≤ 2

√
∆− 1. Since the zeros of the matching polynomial are

symmetric to 0 we get that all zeros lie in the interval [−2
√
∆− 1, 2

√
∆− 1].

Proposition 8.1.10. Let

µ(G− u, x)

µ(G, x)
=
∑
k

ak(G, u)x−(k+1).

Then ak(G, u) counts the number of closed walks of length k in the tree T (G, u) from
u to u.

Proof. This proposition follows from Proposition 8.1.6 and 8.1.7 and the fact that

φ(H − u, x)

φ(H, x)
=
∑
k

Wk(H, u)x−(k+1),

where Wk(H, u) counts the number of closed walks of length k from u to u in a graph
H. Indeed,

µ(G− u, x)

µ(G, x)
=

µ(T (G, u)− u, x)

µ(T (G, u), x)
=

φ(T (G, u)− u, x)

φ(T (G, u), x)
=
∑
k

Wk(T (G, u), u)x−k.

Here Wk(T (G, u), u) = ak(G, u) by definition.

Remark 8.1.11. A walk in the tree T (G, u) from u can be imagined as follows.
Suppose that in the graph G a worm is sitting at the vertex u at the beginning.
Then at each step the worm can either grow or pull back its head. When it grows it
can move its head to a neighboring unoccupied vertex while keeping its tail at vertex
u. At each step the worm occupies a path in the graph G. A closed walk in the
tree T (G, u) from u to u corresponds to the case when at the final step the worm
occupies only vertex u. C. Godsil calls these walks tree-like walks in the graph G.
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Proposition 8.1.12. (a) Let

µ′(G, x)

µ(G, x)
=
∑
k

ak(G)x−(k+1).

Then ak(G) counts the number of closed tree-like walks of length k.

(b) If µ(G, x) =
∏v(G)

i=1 (x− αi) then for all k ≥ 1 we have

ak(G) =

v(G)∑
i=1

αk
i .
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9. Subgraph counting polynomial

9.1 One more graph polynomial

In this chapter we always assume that G is a d-regular graph. (One can extend the
definition of the subgraph counting polynomial to an arbitrary graph, but in this
chapter it will be convenient just to look at this special case.)

Definition 9.1.1. The subgraph counting polynomial is defined as

FG(x0, . . . , xd) =
∑
A⊆E

(∏
v∈V

xdA(v)

)
,

and a bit more generally,

FG(x0, . . . , xd|z) =
∑
A⊆E

(∏
v∈V

xdA(v)

)
z2|A| = FG(x0, x1z, x2z, ..., xdz

d).

As an example we give the subgraph counting polynomial FK5(x0, x1, x2, x3, x4)

of the complete graph K5 on 5 vertices. The first term corresponds to the empty
subgraph, the last term corresponds to the graph itself.

x5
0 + 10x3

0x
2
1 + 15x0x

4
1 + 30x2

0x
2
1x2 + 30x4

1x2 + 60x0x
2
1x

2
2 + 10x2

0x
3
2 + 70x2

1x
3
2 + 15x0x

4
2

+ 12x5
2 + 20x0x

3
1x3 + 60x3

1x2x3 + 60x0x1x
2
2x3 + 120x1x

3
2x3 + 60x2

1x2x
2
3 + 30x0x

2
2x

2
3 + 70x3

2x
2
3

+ 60x1x2x
3
3 + 5x0x

4
3 + 30x2x

4
3 + 5x4

1x4 + 30x2
1x

2
2x4 + 15x4

2x4 + 60x1x
2
2x3x4 + 60x2

2x
2
3x4

+ 20x1x
3
3x4 + 15x4

3x4 + 10x3
2x

2
4 + 30x2x

2
3x

2
4 + 10x2

3x
3
4 + x5

4.

If G is not necessarily d-regular, then the above definitions have to be changed as
follows. For each vertex v we introduce a set of variables x

(v)
0 , x

(v)
1 , . . . , x

(v)
d(v). Then

the subgraph counting function is defined as

FG

((
x
(v)
0 , x

(v)
1 , . . . , x

(v)
d(v)

)
v∈V

)
=
∑
A⊆E

(∏
v∈V

x
(v)
dA(v)

)
,
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and

FG

((
x
(v)
0 , x

(v)
1 , . . . , x

(v)
d(v)

)
v∈V

|z
)
=
∑
A⊆E

(∏
v∈V

x
(v)
dA(v)

)
z2|A|.

9.1.1 Rank 2 matrices

There are several things that can be encoded by the subgraph counting polynomial.
For instance, FG(0, 1, 0, . . . , 0) counts the number of perfect matchings of the graph
G by definition. Later we will show that the number of Eulerian orientations can be
encoded by the subgraph counting polynomial too. (See the next chapter.)

In this section we show that even if the matrix N has rank 2 (for instance, because
it is itself a 2× 2 matrix), then ZG(N,µ) can be encoded by the subgraph counting
polynomial.

Suppose that we can write an r × r matrix N into the form N = aaT + bbT and
let µ ∈ Rr. Then

ZG(N,µ) =
∑

φ:V→[r]

∏
v∈V

µφ(v)

∏
(u,v)∈E

Nφ(u)φ(v)

=
∑

φ:V→[r]

∏
v∈V

µφ(v)

∏
(u,v)∈E

(aaT + bbT )φ(u)φ(v)

=
∑
A⊆E

∑
φ:V→[r]

∏
v∈V

µφ(v)

∏
(u,v)∈E\A

(aaT )φ(u)φ(v)
∏

(u,v)∈A

(bbT )φ(u)φ(v)

=
∑
A⊆E

∑
φ:V→[r]

∏
v∈V

µφ(v)

∏
(u,v)∈E\A

(aφ(u)aφ(v))
∏

(u,v)∈A

(bφ(u)bφ(v))

=
∑
A⊆E

∏
v∈V

(
r∑

k=1

µka
d−dS(v)
k b

dS(v)
k

)
= FG(r0, . . . , rd),

where rj =
∑r

k=1 µka
d−j
k bjk. On the other hand, a and b are not the only vectors

satisfying N = aaT + bbT . Indeed, let us define the vectors a(t) and b(t) as follows:

a(t)j = aj cos(t) + bj sin(t),

and
b(t)j = −aj sin(t) + bj cos(t).

Then N = a(t)a(t)T + b(t)b(t)T . So each pair a(t), b(t) gives rise to a vector v(t) =

(r0(t), . . . , rd(t)) such that
FG(v(t)) = ZG(N,µ).
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10. Gauge transformation

10.1 Introduction

In this chapter we discuss a method that enables us to prove complicated combina-
torial formulas by algebraic manipulations. First we introduce the concept of the
normal factor graph that is a quite general way to encode enumeration problems.
Then we study the so-called gauge transformation, a method that provides identities
among combinatorial formulas.

10.2 Normal factor graphs and gauge transforma-

tions

Definition 10.2.1. A normal factor graph H = (V,E,X , (fv)v∈V ) is a graph (V,E)

equipped with an alphabet X and a function fv : X dv → R at each vertex. At
each edge e there is a variable xe taking values from the alphabet X . The partition
function

Z(H) =
∑
σ∈XE

∏
v∈V

fv(σ∂v),

where σ∂v is the restriction of σ to the the edges incident to the vertex v.

For instance, if X = {0, 1} and

fv(σ1, . . . , σdv) =

{
1 if

∑dv
i=1 σi = 1,

0 otherwise,

where dv is the degree of the vertex v, then Z(H) is exactly the number of perfect
matchings of the underlying graph.

Let H = (V,E,X , (fv)v∈V ) be a normal factor graph with alphabet X . We will
show that it is possible to introduce a new normal factor graph Ĥ = (V,E,Y , (f̂v)v∈V )
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on the same graph with new functions f̂v and alphabet Y such that Z(Ĥ) = Z(H).
As we will see, sometimes it will be more convenient to study the new normal factor
graph Ĥ.

Let Y be a new alphabet, and for each edge (u, v) ∈ E let us introduce two new
matrices, Guv and Gvu of size Y ×X . The new variables will be denoted by τ ∈ YE,
the old ones by σ ∈ XE. For a vertex v with degree dv = k let

f̂v(τvu1 , . . . , τvuk
) =

∑
σvu1 ,...,σvuk

 ∏
ui∈N(v)

Gvui
(τvui

, σvui
)

 fv(σvu1 , . . . , σvuk
).

This way we defined the functions f̂v of Ĥ.

This transformation is called a gauge transformation. In computer science, this
method was introduced by Valiant under the name holographic reduction [49, 52,
51, 50]. In statistical physics, it was developed by Chertkov and Chernyak under
the name gauge transformation [18, 19]. Wainwright, Jaakola, Willsky had a related
idea under the name reparametrization [55], but it is not easy to see the connection.
In the different cases the scope was slightly different, Valiant used it as a reduction
method for computational complexity of counting problems. This line of research
was extended in a series of papers of Jin-Yi Cai and his coauthors, see Jin-Yi Cai’s
book [11] and the papers [12, 14, 13, 10, 15, 16] and references therein. Chertkov and
Chernyak [18, 19] studied the so-called Bethe–approximation through gauge trans-
formations. We simply use it as a method of proving the identity of Theorem 13.2.1.

The following theorem is due to Chertkov and Chernyak [18, 19] and indepen-
dently Valiant [49].

Theorem 10.2.2. If for each edge (u, v) ∈ E we have GT
uvGvu = IdX , then Z(Ĥ) =

Z(H).

Proof. Let us start to compute Z(Ĥ) =
∑

τ∈YE

∏
v∈V f̂v(τ∂v):

Z(Ĥ) =
∑
τ∈YE

∏
v∈V

 ∑
σvu1 ,...,σvuk

 ∏
ui∈N(v)

Gvui
(τvui

, σvui
)

 fv(σvu1 , . . . , σvuk
)

 .

If we expand it will have terms
∏

v∈V fv(σvu1 , . . . , σvuk
) with some coefficients. A

priori it can occur that these terms are incompatible in the sense that σuv ̸= σvu.
As we will see, the role of the conditions on Guv is exactly to ensure that if there
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is an edge (u, v) ∈ E with σuv ̸= σvu, then the coefficient is 0, and if all edges are
compatible, then the coefficient is 1. Indeed, the coefficient is∑

τ∈YE

∏
v∈V

∏
ui∈N(v)

Gvui
(τvui

, σvui
).

Note that τuv = τvu for each edge, and this variable appears only at the vertices u

and v, and nowhere else. Hence

∑
τ∈YE

∏
v∈V

∏
ui∈N(v)

Gvui
(τvui

, σvui
) =

∏
(u,v)∈E

(∑
τuv

Guv(τuv, σuv)Gvu(τvu, σvu)

)
=

=
∏

(u,v)∈E

(∑
τuv

GT
uv(σuv, τvu)Gvu(τvu, σvu)

)
=

∏
(u,v)∈E

(GT
uvGvu)σuv ,σvu =

∏
(u,v)∈E

(Id)σuv ,σvu .

Hence this is only non-zero if σuv = σvu for each edge (u, v) ∈ E(G), and then this
coefficient is 1.

10.3 Perfect matchings

As a quick application let see an example.

Theorem 10.3.1. Let G = (V,E) be a d–regular graph on 2n vertices. Then for the
number of perfect matchings of G we have

pm(G) =

(
(d− 1)d−1

dd−2

)n ∑
A⊆E

1

(d− 1)|A|

∏
v∈V

(1− dA(v)),

where dA(v) is the degree of the vertex v in the graph (V,A).

Proof. Clearly, pm(G) =
∑

σ∈XE

∏
v∈V fv(σ∂v), where X = {0, 1} and

fv(σ1, . . . σd) =

{
1 if

∑d
i=1 σi = 1,

0 otherwise.

Now let Guv = G for each edge (u, v), where

G :=

 √
d−1
d

1√
d

1√
d

−
√

d−1
d

 .
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Then GTG = Id. We have

f̂G,v(0, . . . , 0) = dG(0, 0)d−1G(0, 1) =

(
(d− 1)d−1

dd−2

)1/2

,

and if there are k ≥ 1 1’s in f̂v, then

f̂v(1, . . . , 1, 0, . . . 0) = kG(1, 0)k−1G(1, 1)G(0, 0)d−k + (d− k)G(1, 0)kG(0, 0)d−k−1G(0, 1)

= G(1, 0)k−1G(0, 0)d−k−1(kG(1, 1)G(0, 0) + (d− k)G(1, 0)G(0, 1))

=

(
(d− 1)d−1

dd−2

)1/2

(1− k)
1

(d− 1)k/2
.

Then the claim follows from Z(Ĥ) = Z(H).

Remark 10.3.2. Clearly, we can restate the claim as follows:

FG(0, 1, 0, . . . , 0) =

(
(d− 1)d−1

dd−2

)n

FG

(
1, 0,

−1

d− 1
,

−2

(d− 1)3/2
, . . . ,

1− d

(d− 1)d/2

)
.

In general, it is true that there are matrices Rt for each t ∈ [0, 2π] such that

FG(x) = FG(Rtx). Such matrices comes from the gauges G =

(
cos(t) sin(t)

− sin(t) cos(t)

)
.

10.4 Eulerian orientations

Theorem 10.4.1. Let s = (s0, s1, . . . , sd) be defined as follows.

sk =


( d
d/2)(

d/2
k/2)

2d/2(dk)
if k is even,

0 if k is odd.

Then FG(s0, . . . , sd) counts the number of Eulerian orientations of a d–regular graph
G.

Proof. First we encode the number of Eulerian orientations as a partition function
of a normal factor graph. Let Sub(G) be the subdivision of the graph G, that is,
we put a vertex to every edge. The vertex set of Sub(G) naturally correspond to
V ∪E, where G = (V,E). An orientation of G correspond to an edge configuration of
Sub(G), where each edge e ∈ V (Sub(G)) is incident to exactly one edge: a directed
edge (v, u) corresponds a configuration, where (v, ev,u) belongs to the configuration,
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but (u, ev,u) does not. So we can describe an Eulerian orientation with the local
functions

fv(σv,ev,u1
, . . . , σv,ev,ud

) =

1 if
∑

ui∈NG(v) σvev,u = d/2,

0 if
∑

ui∈NG(v) σvev,u ̸= d/2.

and

feu,v(σu,eu,v , σv,eu,v) =

1 if σu,eu,v , σv,eu,v = 1,

0 if σu,eu,v , σv,eu,v ̸= 1.

Next we use the gauge theory. For each edge e = (u, v) ∈ E(G) we introduce two
matrices in Sub(G): Geu = Gev = G1 and Gue = Gve = G2, where

G1 :=
1√
2

(
1 1

i −i

)
and G2 :=

1√
2

(
1 1

−i i

)
.

In what follows the rows and columns of G1, G2, Fe are indexed by 0 and 1, and
for a matrix A and σ, τ ∈ {0, 1} we use the notation A(σ, τ) for the corresponding
element. In particular, we have

Fe =

(
0 1

1 0

)

Observe that GT
2G1 = Id. First let us compute f̂e(τ1, τ2):

f̂e(τ1, τ2) =
∑
σ1,σ2

G1(τ1, σ1)G1(τ2, σ2)fe(σ1, σ2)

=
∑
σ1,σ2

G1(τ1, σ1)fe(σ1, σ2)G
T
1 (σ2, τ2)

= (G1FeG
T
1 )(τ1, τ2).

Hence by simple matrix multiplication we have

F̂e = G1FeG
T
1 =

(
1 0

0 1

)
.

This means that in Z(Ĥ) only those terms will survive that correspond to a subgraph
of G.

Next let us compute f̂v(τ1, . . . , τd). By definition

f̂v(τ1, . . . , τd) =
∑

σ1,...,σd

d∏
i=1

G2(τi, σi)fv(σ1, . . . , σd).
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Recall that only those terms remain, where
∑

i σi = d
2
. Suppose that

∑
i τi = k.

If there are j places where both σi = τi = 1, then its contribution to the sum is
ij(−i)k−j, so

f̂v(τ1, . . . , τd) =
∑

σ1,...,σd

d∏
i=1

G2(τi, σi)fv(σ1, . . . , σd) =
1

2d/2

k∑
j=0

(
k

j

)(
d− k

d/2− j

)
(−1)k−jik.

Observe that

d/2∑
j=0

(−1)k−j

(
k

j

)(
d− k

d/2− j

)
=

d/2∑
j=0

(−1)k−j k!(d− k)!

j!(k − j)!(d/2− j)!(d/2− k + j)!

=

(
d

d/2

)(
d
k

) d/2∑
j=0

(−1)k−j

(
d/2

j

)(
d/2

k − j

)
.

Note that
∑d/2

j=0(−1)k−j
(
d/2
j

)(
d/2
k−j

)
is the coefficient of xk in

(1− x)d/2(1 + x)d/2 = (1− x2)d/2

which is clearly 0 if k is odd, and (−1)k/2
(
d/2
k/2

)
if k is even. Hence

f̂v(τ1, . . . , τd) = s||τ ||1 .

This means that
Z(Ĥ) = FG(s0, . . . , sd).

Remark 10.4.2. Let G be a regular graph, and let

HG(y−d, y−d+2, . . . , yd−2, yd) =
∑
O

∏
v∈V

yd+O(v)
−d−O(v),

where the summation goes for all orientations of the graph G, and d+O(v) and d−O(v)

are the out-degree and in-degree of G in O. In general it is true that there is a
(d + 1) × (d + 1) matrix Md such that HG(x) = FG(Mdx) for every graph G and
x ∈ Cd+1. This statement also extends to non-regular graphs.
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11. Lee-Yang-type theorems

11.1 Lee-Yang theorem and Ising-model

Let D = {z ∈ C | |z| ≤ 1} and D = C\D. In this section we study D-stable polyno-
mials. A multivariate polynomial P ∈ C[z1, . . . , zn] is D-stable if P (z1, . . . , zn) ̸= 0

whenever min(|z1|, . . . , |zn|) > 1. This is consistent with the general definition of
Ω-stability. Our main goal is to prove the following generalization of the Lee-Yang
theorem.

Theorem 11.1.1 (Lee-Yang, Asano). Let G be a graph on vertex set V (G) = [n],
and for each edge (u, v) ∈ E(G) let au,v be a real number satisfying |au,v| ≤ 1. Then
the polynomial

JG(z1, . . . , zn) =
∑

S⊆V (G)

 ∏
(u,v)∈E(G)

u∈S,v∈S

au,v

∏
u∈S

zu

is D-stable.

Remark 11.1.2. Sometimes the above theorem phrased as follows. Let A = (aij)

be a symmetric matrix such that |aij| ≤ 1 for all i, j ∈ [n]. Then the polynomial

J(z1, . . . , zn) =
∑
S⊆[n]

∏
i∈S
j∈S

ai,j

∏
i∈S

zi

is D-stable.
From this theorem the above version can be obtained by writing 1 to the non-

edges. This version can be obtained by applying the above theorem to the complete
graph.

The theorem remains true if ai,j are complex numbers, but in this case aj,i = ai,j

should hold for all i, j ∈ [n]. The whole proof remains valid, only we need to change
1 + β(z1 + z2) + z1z2 to 1 + βz1 + βz2 + z1z2 in Lemma 11.1.7 below.
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Before we start to prove Theorem 11.1.1 let us see some important consequences.

Theorem 11.1.3 (Lee-Yang). Let G be a graph on vertex set, and for each edge
(u, v) ∈ E(G) let au,v be a real number satisfying |au,v| ≤ 1. Let

PG(z) =
∑

S⊆V (G)

 ∏
(u,v)∈E(G)

u∈S,v∈S

au,v

 z|S|

Then all zeros of the polynomial PG(z) have absolute value 1.

Proof. Note that
PG(z) = JG(z, z, . . . , z).

Hence it cannot have a zero z with |z| > 1. On the other hand, the coefficient of the
term corresponding to S is the same as the one corresponding to S whence

JG(z1, . . . , zn) =

(
n∏

i=1

zi

)
JG

(
1

z1
, . . . ,

1

zn

)
.

From this it follows that PG(z) ̸= 0 if 0 < |z| < 1. Finally, PG(0) = 1 ̸= 0. Hence all
zeros of PG(z) have absolute value 1.

Theorem 11.1.4. Let β > 0. Consider the partition function of the Ising-model
with ν(1) = z, ν(−1) = 1

z
:

Z(G,AIs(β), νln(z)) =
∑

σ:V (G)→{−1,1}

exp

 ∑
(u,v)∈E(G)

βσ(u)σ(v) + ln(z)
∑

u∈V (G)

σ(u)

 .

Then all zeros of Z(G,AIs(β), νln(z)) have absolute value 1.

Proof. Let e(G) be the number of edges of G, and set au,v = e−2β if (u, v) ∈ E(G).
Then with PG(z) defined in Theorem 11.1.3 we have

Z(G,AIs(β), νln(z)) = z−v(G)ee(G)βPG(z
2).

Hence the theorem follows from Theorem 11.1.3.

Now let us start to prove Theorem 11.1.1. The main tool of the its proof will be
the so-called Asano contraction.
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Lemma 11.1.5 (Asano). Suppose that the affine polynomial

P (z1, z2, z3, . . . zn) = A(z3, . . . , zn)+B(z3, . . . , zn)z1+C(z3, . . . , zn)z2+D(z3, . . . , zn)z1z2

is D-stable and D is not the constant 0 polynomial. Then the polynomial

Q(z, z3, . . . , zn) = A(z3, . . . , zn) +D(z3, . . . , zn)z.

is D-stable too.

Remark 11.1.6. The condition that D is not the constant 0 polynomial is necessary.
Let |β| < 1 and consider the polynomial

P (z1, z2, z3) = (1 + βz3) + (β + z3)z1.

This is D-stable as we will see. On the other hand, A(z3) = 1+ βz3 is not D-stable.

Proof. Let us fix some z3, . . . , zn such that min(|z3|, . . . , |zn|) > 1, and set

A0 = A(z3, . . . , zn), B0 = B(z3, . . . , zn), C0 = C(z3, . . . , zn), D0 = D(z3, . . . , zn).

The polynomial A0 + (B0 + C0)z +D0z
2 cannot have a zero of absolute value more

than 1, because this would contradict the stability of P . Suppose that D0 ̸= 0. If
the zeros of the polynomial A0 + (B0 + C0)z +D0z

2 are γ1, γ2 then∣∣∣∣A0

D0

∣∣∣∣ = |γ1γ2| ≤ 1.

Then Q(z, z3, . . . , zn) cannot be 0 if |z| > 1.
Now suppose that D0 = 0. If Q(z, z3, . . . , zn) = 0 then A0 must be 0. In this case

we show that P cannot be D-stable. If B0 and C0 are both 0 then we can choose any
z1, z2 having absolute value bigger than 1 to show that P is not D-stable. Suppose
now that at least one of B0 and C0 are not 0. By symmetry we can assume that
B0 ̸= 0. Since the polynomials D is not constant 0 we can choose a (z′3, . . . , z

′
n) in

the neighborhood of (z3, . . . , zn) such that

0 < |D(z′3, . . . , z
′
n)| < |B(z′3, . . . , z

′
n)|.

This can be achieved since D0 = 0 and B0 ̸= 0 and these functions are continuous.
Let

A1 = A(z′3, . . . , z
′
n), B1 = B(z′3, . . . , z

′
n), C1 = C(z′3, . . . , z

′
n), D0 = D(z′3, . . . , z

′
n).
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Set
z2 = −A1 +B1z1

C1 +D1z1

for some z1 with large absolute value. Here C1 +D1z1 ̸= 0 if |z1| > |C1|/|D1|. Then

|z2| ≥
|B1z1| − |A1|
|C1|+ |D1||z1|

>
|B1|
|D1|

− ε > 1

for z1 with large enough |z1|. But then P (z1, z2, z
′
3, . . . , z

′
n) = 0 contradicting the

assumption. We are done.

Lemma 11.1.7. Let β be a real number satisfying |β| ≤ 1, and let z1, z2 be complex
numbers such that min(|z1|, |z2|) > 1. Then

1 + β(z1 + z2) + z1z2 ̸= 0.

In other words, the polynomial P (x1, x2) = 1 + β(x1 + x2) + x1x2 is D-stable.

Proof. Suppose for contradiction that

1 + β(z1 + z2) + z1z2 = 0.

Then
z2 =

1 + βz1
β + z1

.

Note that the denominator cannot be 0 since |β| ≤ 1 < |z1|. Then

|z2|2 =
|1 + βz1|2

|β + z1|2
=

(1 + βz1)(1 + βz1)

(β + z1)(β + z1)
=

1 + |β|2|z1|2 + 2Re(βz1)

|β|2 + |z1|2 + 2Re(βz1)
.

Since β is real we have Re(βz1) = Re(βz1). Since |z2| > 1 we get that

1 + |β|2|z1|2 + 2Re(βz1) > |β|2 + |z1|2 + 2Re(βz1).

This is equivalent with
(1− |β|2)(1− |z1|2) > 0

which contradicts the assumption that |β| ≤ 1 and |z1| > 1.

Proof of Theorem 11.1.1. Let u, v be the vertices of a graph H and let H∗ be a graph
obtained from H by contracting u and v to a new vertex t such a way that for a
vertex s let at,s = at,uat,v, where ax,y = 1 if (x, y) /∈ E(H). Then if

JH(z) = A+Bzu + Czv +Dzuzv
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then
JH∗(z) = A+Dzt.

Indeed, A,B,C,D correspond to the cases where u and v are in S or not in S, and
we can think to H∗ as u and v be forced to be in S or not in S at the same time.
Note that D is not the constant 0 polynomial as S = V (H) shows that

∏
v∈V (H) zv

is a term in the polynomial. This shows that if JH is D-stable then so is JH∗ .
We show that G can be obtained from subsequent contractions of a graph H

having a D-stable JH . Let H be the graph with 2|E(G)| + |V (G)| vertices, and
|E(G)| edges as follows. For each (u, v) ∈ E(G) we introduce two vertices w(u,v) and
w(v,u) with variables z(u,v) and z(v,u), and put an edge between them with value au,v.
The remaining |V (G)| vertices are isolated vertices and we associate a variable zu

corresponding to u ∈ V .
Observe that if H1 and H2 are two graphs on disjoint vertex set then

JH1∪H2 = JH1 · JH2 .

Consequently for the graph H we get that

JH =
∏

(u,v)∈E(G)

(1 + au,vz(u,v) + av,uz(v,u) + z(u,v)z(v,u)) ·
∏

u∈V (G)

(1 + zu).

According to Lemma 11.1.7 this is a D-stable polynomial. Now let us start to
contract the vertices w(u,v) with vertex u for all (u, v) ∈ E(G). In each step we call
the new variable zu again. Since the polynomial is multivariate linear, it will not
cause any problem.

Then at the end we get the graph G, and we get that the corresponding polyno-
mial JG is D-stable.

11.2 Wagner’s theorem

In this section we give a theorem of Wagner (Theorem 3.2 of [54]) without proof about
the location of zeros of FG(x0, . . . , xd|z). For any fixed vertex v and x

(v)
0 , . . . , x

(v)
d(v)

let us define the following key-polynomial

Kv(x
(v)
0 , . . . , x

(v)
d |z) =

d(v)∑
k=0

(
d(v)

k

)
x
(v)
k zk.
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Theorem 11.2.1 (Wagner [54]). If for any vertex v the polynomial Kv(x
(v)
0 , . . . , x

(v)
d |z)

has no complex zero in the open disk of radius κ around 0, then FG

((
x
(v)
0 , x

(v)
1 , . . . , x

(v)
d(v)

)
v∈V

|z
)

has no complex zero in the open disk of radius κ around 0 for any d-regular graph G.
If for any vertex v the polynomial Kv(x

(v)
0 , . . . , x

(v)
d |z) has no complex zero in the

complement of a closed disk of radius κ around 0, then FG

((
x
(v)
0 , x

(v)
1 , . . . , x

(v)
d(v)

)
v∈V

|z
)

has no complex zero in the complement of a closed disk of radius κ around 0 for any
graph G.

In particular, if for any vertex v the polynomial Kv(x
(v)
0 , . . . , x

(v)
d |z) has only zeros

on the circle of radius κ around 0, then FG

((
x
(v)
0 , x

(v)
1 , . . . , x

(v)
d(v)

)
v∈V

|z
)

has complex
zeros only on the circle of radius κ for any graph G.
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12. Combinatorial Approximation I

12.1 Introduction

In this section we introduce various approximations of the partition function of the
random cluster model. In the sequel the rank 2 approximation will be especially
important for us. In this chapter we use the notation ZG(q, w) for ZRC(G, q, w) =∑

A⊆E(G) q
k(A)w|A|.

12.2 Rank 1 approximation.

For motivational purposes let us assume for a moment that q is a positive integer.
Then it is known that

ZG(q, w) = ZG(M),

where M is the q×q matrix with entries 1+w in the diagonal and 1’s as off-diagonal
elements. It is a natural idea to approximate M with the rank 1 matrix M1 such
that the sum of all entries of M and M1 are equal. In other words, let M1 be the
q × q matrix with entries 1 + w

q
everywhere. Note that by the definition of ZG(M1)

we have

ZG(M1) = qv(G)

(
1 +

w

q

)e(G)

.

Let us call the quantity

Z
(1)
G (q, w) = qv(G)

(
1 +

w

q

)e(G)

the rank 1 approximation of ZG(q, w). This quantity makes sense even if q is positive,
but not necessarily integer and we will refer to it as the rank 1 approximation of
ZG(q, w) even in this case.
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Lemma 12.2.1. If q ≥ 1, then

ZG(q, w) ≥ Z
(1)
G (q, w).

If 0 < q ≤ 1, then
ZG(q, w) ≤ Z

(1)
G (q, w).

Proof. Using the fact that k(A) ≥ v(G)−|A| for an A ⊆ E(G) we get that for q ≥ 1

we have

ZG(q, w) =
∑

A⊆E(G)

qk(A)w|A| ≥
∑

A⊆E(G)

qv(G)−|A|w|A| = qv(G)

(
1 +

w

q

)e(G)

.

For q ≤ 1 we have the opposite inequality in the above computation.

12.3 Rank 2 approximation

What is better than a rank 1 approximation? Naturally, a rank 2 approximation.
Again for motivational purposes let us assume for a moment that q ≥ 2 is an

integer. This time let us approximate the matrix M with the following rank 2 matrix
M2.

M2 =


1 + w 1 . . . 1

1 1 + w
q−1

. . . 1 + w
q−1

...
... . . . ...

1 1 + w
q−1

. . . 1 + w
q−1

 .

Then

ZG(M2) =
∑
S⊆V

(1 + w)e(S)(q − 1)v(G)−|S|
(
1 +

w

q − 1

)e(G−S)

.

Indeed, let S = φ−1(1) in the definition of ZG(M2). Let us introduce the quantity

Z
(2)
G (q, w) =

∑
S⊆V

(1 + w)e(S)(q − 1)v(G)−|S|
(
1 +

w

q − 1

)e(G−S)

.

The definition of Z(2)
G (q, w) makes perfect sense if q > 1, but not necessarily integer

and we will refer to it as the rank 2 approximation of ZG(q, w). Recall that

M ′
2 =

(
1 + w 1

1 1 + w
q−1

)
and ν2 =

(
1

q − 1

)
,
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and note that
Z

(2)
G (q, w) = ZG(M

′
2, ν2)

even if q is not an integer.

This time it is less clear that it is a natural approximation, but as it will turn
out this is an asymptotically precise approximation for essentially large girth graphs
if q ≥ 2 and w ≥ 0. We can prove it through a series of lemmas.

Lemma 12.3.1. We have

ZG(q, w) =
∑
S⊆V

(1 + w)e(S)ZG−S(q − 1, w).

Proof. This identity is trivially true for positive integer q using the interpretation of
ZG(q, w) as the partition function of the Potts-model. Since we have polynomials on
both sides we get that it is true for all q and w.

Lemma 12.3.2. For q ≥ 2 we have

ZG(q, w) ≥ Z
(2)
G (q, w).

For 1 < q ≤ 2 we have
ZG(q, w) ≤ Z

(2)
G (q, w).

Proof. By Lemma 12.3.1 we have

ZG(q, w) =
∑
S⊆V

(1 + w)e(S)ZG−S(q − 1, w).

By the definitions of Z(2)
G (q, w) and Z

(1)
G (q, w) we have

Z
(2)
G (q, w) =

∑
S⊆V

(1 + w)e(S)Z
(1)
G−S(q − 1, w).

Now the claim follows by Lemma 12.2.1

Now we are ready to prove that the rank 2 approximation is asymptotically
precise for essentially large girth graphs if q ≥ 2 and w ≥ 0.

Theorem 12.3.3. Let G be a graph on n vertices with L = L(G, g) cycles of length
at most g − 1. Let q ≥ 2. Then

Z
(2)
G (q, w) ≤ ZG(q, w) ≤ qn/g+LZ

(2)
G (q, w).

66



Proof. The lower bound was already proven in Lemma 12.3.2. So we only need to
prove the upper bound.

Given A ⊆ E(G) we can decompose A as follows. Let V1, . . . , Vr be the vertex
sets of the connected components of the graph H = (V,A), and let A1, . . . , Ar be the
corresponding subsets of A. If Vi is an isolated vertex, then Ai = ∅.

Let us say that Vi is small if the induced graph G[Vi] does not contain a cycle. In
particular, Ai does not contain a cycle either. Note that it is possible that Ai does
not contain a cycle, but the induced graph G[Vi] contains a cycle, and so Vi is not
small. Let SA denote the set of small Vi’s. We say that Vi is large if it is not small,
and we denote by LA the set of large Vi’s. Note that |LA| ≤ n/g+L since each large
connected component has size at least g or it contains a cycle of length at most g−1.

Finally, let us say that a vertex set R is compatible with A if R is the union of
some small Vi’s. Note that R may be the empty set. We denote this relation by
R ∼ A. Furthermore, let AJRK be the edges of A induced by the vertex set R. Note
that if R ∼ A, then AJRK is a forest. On the other hand, there is no restriction on
AJV \RK. Figure 12.1 depicts an example for the introduced concepts.

Figure 12.1: A subgraph A is depicted with thick edges. There are 4 components.
The edge sets with connected components of size 3 and 4 belong to Aℓ. The edge
sets with connected components of size 1 and 2 belong to As. A compatible set R is
either the vertex set of the latter components or the empty set or the union of these
two connected components.

Let k(R,AJRK) denote the number of connected components of the graph (R,AJRK).
By the binomial identity we have

q|SA| = ((q − 1) + 1)|SA| =
∑
R∼A

(q − 1)k(R,AJRK).

67



Then

ZG(q, w) =
∑

A⊆E(G)

qk(A)w|A|

=
∑

A⊆E(G)

q|SA|+|LA|w|A|

≤ qn/g+L
∑

A⊆E(G)

q|SA|w|A|

= qn/g+L
∑

A⊆E(G)

∑
R:R∼A

(q − 1)k(R,AJRK)w|A|

= qn/g+L
∑

R⊆V (G)

∑
A:R∼A

(q − 1)k(R,AJRK)w|AJRK|+|AJV \RK|

= qn/g+L
∑

R⊆V (G)

(1 + w)e(V \R)
∑
D

(q − 1)k(R,D)w|D|,

where in the last sum, D = AJRK is a subset of the edges induced by R such that
none of the induced connected components contains a cycle. Then

∑
D

(q − 1)k(R,D)w|D| =
∑
D

(q − 1)|R|−|D|w|D| ≤ (q − 1)|R|
(
1 +

w

q − 1

)e(R)

.

Hence
ZG(q, w) ≤ qn/g+L

∑
R⊆V (G)

(1 + w)e(V \R)Z
(1)
G[R](q − 1, w),

that is
ZG(q, w) ≤ qn/g+LZ

(2)
G (q, w).

The following theorem is an immediate consequence of Theorem 12.3.3.

Theorem 12.3.4. Let q ≥ 2 and w ≥ 0. Let (Gn)n be an essentially large girth
sequence of d-regular graphs. If the limit

lim
n→∞

1

v(Gn)
lnZ

(2)
Gn

(q, w)

exists, then the limit

lim
n→∞

1

v(Gn)
lnZGn(q, w)

exists too, and they have the same value.
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13. Combinatorial approximation II

13.1 The polynomial RG(z)

In this section, we study a polynomial that is related to the matching polynomial of
a graph G. Recall that a set of edges M is a matching if no two edges of M have
common end vertices. A k-matching is simply a matching of size k.

Definition 13.1.1. Let

RG(z) =
∑

M∈M(G)

(−z)|M |
∏

v/∈V (M)

(z + dv − 1),

where dv is the degree of the vertex v, and M(G) is the set of matchings of G

including the empty one.

In what follows, we first study RG(z) from the perspective of a model that we
call the half-edge model, and is inspired by the monomer-dimer model of statistical
physics. This perspective will enable us to rewrite RG(z + 1) as a weighted sum of
pseudo-forests.

13.2 Half-edge model

In this part, we introduce the half-edge model. A half-edge configuration is a config-
uration of edges and half-edges of the graph G such that each vertex of G is incident
to at most one edge or half-edge. For such a configuration C, let C0 be the number
of edges of G, where no half edge is chosen, C1 is the number of edges, where exactly
one half is chosen, and C2 where both halves are chosen (in other words, the edge is
chosen). Let

MG(a0, a1, a2) =
∑
C

aC0
0 aC1

1 aC2
2 .
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An equivalent way to think about a half-edge configuration is to consider the
partial orientation of the edges, where every vertex has out-degree at most 1. To
see this, consider a half-edge configuration A. If a half-edge is chosen at a vertex v,
then orient the edge away from v (we allow edges to have double orientation). This
is clearly a natural bijection between partial orientations with out-degree at most 1
and half-edge configurations.

Figure 13.1: A 6-cycle with a half-edge configuration contributing a term a20a
3
1a2 and

its partial orientation representation.

Theorem 13.2.1. For a graph G on n vertices we have

MG(a0, a1, a2) = a
|E|−n
0

∑
M∈M(G)

(a0a2 − a21)
|M |

∏
v/∈V (M)

(a0 + dva1),

where dv is the degree of the vertex v for all v ∈ V .

Proof. First we turn the half-edge model into a normal factor graph. First let
Sub(G) = (V ′, E ′) be the subdivision of the graph G, that is, we subdivide each
edge of the graph with a new vertex. A new vertex will be denoted by e too just
like the edge of G that we subdivided, this abuse of the notation will not cause any
confusion. Similarly, we will use the notation v for both a vertex of the original
graph G and the corresponding vertex in Sub(G). With this abused notation we
have V ′ = V ∪ E.

Then let H be the normal factor graph with underlying graph Sub(G), alphabet
X = {0, 1} and the following functions. For a vertex v with degree dv corresponding
to a vertex of the original graph let

fv(σ1, . . . , σdv) =

{
1 if

∑dv
i=1 σi ≤ 1,

0 otherwise.

For the new vertices
fe(σ1, σ2) = aσ1+σ2 .
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Later it will be more convenient to work with the matrix

Fe :=

(
a0 a1

a1 a2

)
.

Then Z(H) = MG(a0, a1, a2).

Next we use the gauge theory. For each edge e = (u, v) ∈ E(G) we introduce two
matrices in Sub(G): Geu = Gev = G1 and Gue = Gve = G2, where

G1 :=

(
1 0

−a1
a0

1

)
and G2 :=

(
1 a1

a0

0 1

)
.

In what follows the rows and columns of G1, G2, Fe are indexed by 0 and 1, and
for a matrix A and σ, τ ∈ {0, 1} we use the notation A(σ, τ) for the corresponding
element.

Observe that GT
2G1 = Id. First let us compute f̂e(τ1, τ2):

f̂e(τ1, τ2) =
∑
σ1,σ2

G1(τ1, σ1)G1(τ2, σ2)fe(σ1, σ2)

=
∑
σ1,σ2

G1(τ1, σ1)fe(σ1, σ2)G
T
1 (σ2, τ2)

= (G1FeG
T
1 )(τ1, τ2).

Here we have

G1FeG
T
1 =

(
a0 0

0
a0a2−a21

a0

)
.

Next let us compute f̂v(τ1, . . . , τdv), where dv is the degree of the vertex v. By
definition

f̂v(τ1, . . . , τdv) =
∑

σ1,...,σdv

dv∏
i=1

G2(τi, σi)fv(σ1, . . . , σdv).

In particular,

f̂v(0, . . . , 0) = G2(0, 0)
dv + dvG2(0, 0)

dv−1G2(0, 1) = 1 + dv
a1
a0

=
a0 + dva1

a0

and
f̂v(1, 0, . . . , 0) = G2(0, 0)

dv−1G2(1, 1) = 1,

and
f̂v(τ1, . . . , τdv) = 0
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if
∑dv

i=1 τi ≥ 2. To see the last two evaluations observe that since G2(1, 0) = 0, a
non-zero term implies that if τi = 1, then σi = 1 too. Hence in case of a non-zero
term

∑dv
i=1 σi ≥

∑dv
i=1 τi. Since fv(σ1, . . . σdv) = 0 if

∑dv
i=1 σi ≥ 2 we only need to

check a few terms.
Now let us compute

Z(Ĥ) =
∑

τ∈YE′

∏
v∈V

f̂v(τ∂v)
∏
e∈E

f̂e(τ∂e).

Since f̂e(0, 1) = f̂e(1, 0) = 0, the non-zero terms correspond to the edge set of the
original graph G. Furthermore, since f̂v(τ1, . . . , τdv) = 0 if

∑dv
i=1 τi ≥ 2 this edge set

has to be a matching. The contribution of a matching M is(
a2a0 − a21

a0

)|M |

a
|E|−|M |
0

∏
v/∈V (M)

a0 + dva1
a0

= a
|E|−n
0 (a2a0 − a21)

|M |
∏

v/∈V (M)

(a0 + dva1).

Hence
Z(Ĥ) = a

|E|−n
0

∑
M∈M(G)

(a0a2 − a21)
|M |

∏
v/∈V (M)

(a0 + dva1).

Since Z(H) = Z(Ĥ) the claim of the theorem follows.

An immediate corollary is the following.

Corollary 13.2.2. We have

MG(z, 1,−1) = z|E|−nRG(z + 1).

Next, we prove an alternative description of MG(z, 1,−1).

Definition 13.2.3. Given a graph G = (V,E) and an A ⊆ E(G) we say that A

is pseudo-forest of the graph G if each of its connected components are forests or
unicyclic graphs. Let PF(G) be the set of pseudo-forests of the graph G. For a
pseudo-forest A let c(A) be the number of cycles in A.

Lemma 13.2.4. We have

MG(z, 1,−1) = z|E|−n

n∑
k=0

 ∑
A∈PF(G)

|A|=k

2c(A)

 zn−k.
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Proof. Let us fix a half-edge configuration. Let A be the subset of the edges where
at least one of the half-edges is chosen. In other words, if we consider the equiva-
lent partial orientation, then we simply take the oriented edges and we forget the
orientation to get A.

Consider a connected component of A, let it be T and let V (T ) be the vertices
covered by T . Since at each vertex in V (T ) there is at most one half-edge chosen in T ,
we get that |T | ≤ |V (T )|. On the other hand, T is connected and so |T | ≥ |V (T )|−1.
Now let us calculate the total weight of those configurations, where T is a connected
component of the configuration.

Figure 13.2: Two possible half-edge configurations when A contains a cycle. They
only differ in the orientation of the cycle. Every other edge is oriented toward the
cycle.

Figure 13.3: Two type of half-edge configurations when A does not contain a cycle.
Either the number of half edges is |V (T )| − 1 or |V (T )|.

If |V (T )| = |T |, then it contains exactly one cycle and from every edge, exactly
one half is chosen. Then it is easy to see that from the unique cycle one can choose
every second half-edge as this corresponds to one of the two orientations of the cycle
if we regard a half-edge configuration as a partial orientation. Every other half-edge
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is uniquely determined. So such a component corresponds to exactly two half-edge
configurations.

If |V (T )| − 1 = |T |, then it contains no cycle. This can happen in two different
ways. In the first case one of the vertices is not covered by a half-edge, equivalently
in the corresponding partial orientation its out-degree is 0. Then the position of
the half-edges is uniquely determined: they are oriented toward this vertex. In the
second case two halves of some edge are chosen and every other half-edge is oriented
toward this edge. In the first case, the contribution is |V (T )| since we can choose
the sink vertex in |V (T )| ways and it determines the orientation. In the second case,
the contribution is −|T | since we can choose the bidirected edge in |T | ways and
such a configuration has weight −1. So altogether we get that such a component
contributes |V (T )| − |T | = 1 to the sum.

Hence a set A contributes to the sum MG(z, 1,−1) if and only if it is a pseudo-
forest and its contribution is 2c(A)z|E|−|A|. Hence

MG(z, 1,−1) =
∑

A∈PF(G)

2c(A)z|E|−|A| = z|E|−n

n∑
k=0

 ∑
A∈PF(G)

|A|=k

2c(A)

 zn−k.

By comparing the previous two results we get the following corollary.

Corollary 13.2.5. We have

RG(z + 1) =
n∑

k=0

 ∑
A∈PF(G)

|A|=k

2c(A)

 zn−k.

Now we are ready to prove Theorem 13.2.1.

13.3 From pseudo-forests to forests

For a graph G on n vertices let us introduce the polynomial

FG(z) =
n∑

k=0

fk(G)zn−k,

where fk(G) denotes the number of spanning forests of G with exactly k edges.
It turns out that if TG(x, y) denotes the Tutte polynomial of the graph G, then
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FG(z) = zk(G)TG(z + 1, 1). Indeed, in the definition of the Tutte polynomial,

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−v(G),

the exponent of y− 1 is 0 if and only if k(A) + |A| = v(G), that is, A is a forest and
then its contribution is zv(G)−|A| to the sum.

Since a forest is a pseudo-forest without any cycle from Corollary 13.2.5 we im-
mediately have FG(z) ≤ RG(z+1) for positive z. The following theorem shows that
for (essentially) large girth graphs the two quantities are not too far from each other.
It is known that random regular graphs contain at most Od(1) cycles of length k

for every fixed k with very high probability as the random variable Xk counting the
number of k-cycles has asymptotically Poisson distribution with parameter (d−1)k

k

(see [37] and the references therein).

Lemma 13.3.1. Let G be a graph on n vertices with average degree d such that it
contains at most L cycles of length at most g − 1. Then(

1 +
gd

z

)−L−n/g

RG(z + 1) ≤ FG(z) ≤ RG(z + 1).

Proof. We have seen that the inequality FG(z) ≤ RG(z + 1) is trivial, so we only
need to prove the other inequality. Let F be a spanning forest of G with connected
components T1, . . . , Tk including the isolated vertices, where k = k(F ). For each Tj

let V (Tj) be its induced vertex set. Let E[V (Tj)] be the subset of edges of G induced
by V (Tj). It contains the edges of Tj, but it may contain other edges.

Furthermore, let ℓ(F ) be the number of components that induces a graph with
some cycles, that is, the number of components, where |E[V (Tj)]| > |V (Tj)| − 1.
We may assume that the trees T1, . . . , Tk are indexed in such a way that for j =

1, . . . , ℓ(F ) we have |E[V (Tj)]| > |V (Tj)| − 1. We can embed the forest F into a
pseudo-forest in

ℓ(F )∏
j=1

(1 + (|E[V (Tj)]| − |V (Tj)|+ 1))

ways with the same induced connected components. Indeed, at each component Tj

we may add no edges, or we may add one of the |E[V (Tj)]| − |V (Tj)| + 1 edges. If
we take into account the weights 2c(A)z−|A| for a pseudo-forest, then we get that

∑
A∈PF(G)

2c(A)z−|A| ≤
∑

F∈F(G)

z−|F |
ℓ(F )∏
j=1

(
1 +

2

z
(|E[V (Tj)]| − |V (Tj)|+ 1)

)
.
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Figure 13.4: A forest F is depicted with thick edges. The dashed edges may be added
to create a pseudo-forest with the same connected components, but in the middle of
the picture at most one of the two dashed edges can be added.

Note that we have no equality in general since we get the same pseudo-forest
from many forests. Note that if |V (Tj)| < g, then E[V (Tj)] cannot contain a cycle
with the exception of at most L components. Thus ℓ(F ) ≤ L + n/g. Then by the
inequality of arithmetic and geometric means we have

ℓ(F )∏
j=1

(
1 +

2

z
(|E[V (Tj)]| − |V (Tj)|+ 1)

)
≤

 1

ℓ(F )

ℓ(F )∑
j=1

(
1 +

2

z
(|E[V (Tj)]| − |V (Tj)|+ 1)

)ℓ(F )

≤

 1

ℓ(F )

ℓ(F )∑
j=1

(
1 +

2

z
|E[V (Tj)]|

)ℓ(F )

≤
(
1 +

2|E|
zℓ(F )

)ℓ(F )

.

Since ℓ(F ) ≤ L+n/g and the function (1+ c/t)t is monotone increasing for positive
t for every c we have(

1 +
2|E|
zℓ(F )

)ℓ(F )

≤
(
1 +

2|E|
z(L+ n/g)

)L+n/g

≤
(
1 +

gd

z

)L+n/g

.

Hence

RG(z + 1) =
∑

A∈PF(G)

2c(A)zn−|A| ≤
(
1 +

gd

z

)L+n/g

FG(z).
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14. Benjamini–Schramm
convergence

14.1 Introduction

It is a natural idea to consider a sequence of finite grids as a graph sequence converg-
ing to an infinite lattice. In this chapter we formalize this idea, and it will turn out
that the resulting notion works in a much bigger generality than just finite subgraphs
of lattices.

Definition 14.1.1 (Benjamini–Schramm convergence and estimable parameters).
We say that a graph sequence (Gn)n is bounded-degree if there is a ∆ such that the
maximum degree of any Gn is at most ∆.

For a finite graph G, a finite connected rooted graph α and a positive integer r,
let P(G,α, r) be the probability that the r-ball centered at a uniform random vertex
of G is isomorphic to α.

Let L be a probability distribution on (infinite) connected rooted graphs; we will
call L a random rooted graph. For a finite connected rooted graph α and a positive
integer r, let P(L, α, r) be the probability that the r-ball centered at the root vertex
is isomorphic to α, where the root is chosen from the distribution L.

We say that a bounded-degree graph sequence (Gn)n is Benjamini–Schramm
convergent if for all finite rooted graphs α and r > 0, the probabilities P(Gn, α, r)

converge. Furthermore, we say that (Gn) Benjamini-Schramm converges to L, if for
all positive integers r and finite rooted graphs α, P(Gn, α, r) → P(L, α, r).

A graph parameter P (G) is estimable if for any Benjamini–Schramm convergent
graph sequence the sequence P (Gn) is convergent.

The Benjamini–Schramm convergence is also called local convergence as it pri-
marily grasps the local structure of the graphs (Gn)n.
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If we take larger and larger boxes in the d-dimensional grid Zd, then it will
converge to the rooted Zd, that is, the corresponding random rooted graph L is
simply the distribution which takes a rooted Zd with probability 1.

In the picture we depict two graph sequences both converging to Z2. The latter
sequence consists of the so-called Aztec diamonds.

When L is a certain rooted infinite graph with probability 1, then we simply
say that this rooted infinite graph is the limit without any further reference on the
distribution.

There are other very natural graph sequences which are Benjamini–Schramm
convergent, for instance, (Gi) is a sequence of d–regular graphs such that the girth
g(Gi) → ∞ (length of the shortest cycle), then it is Benjamini–Schramm convergent
and we can even see its limit object: the rooted infinite d-regular tree Td.

There is an alternative way to look at graph parameters that are convergent when-
ever the graphs are Benjamini–Schramm convergent. For a vertex v ∈ V (G) let Br(v)

denote its neighborhood of radius r. Let Br denote all possible r-neighborhoods, that
is, the rooted graphs of radius at most r. We call a bounded graph parameter es-
timable, if for every ε > 0 there are positive integers k and r, and an “estimator”
function g : Bk

r → R such that for every graph G and uniform, independently chosen
random vertices v1, . . . , vk ∈ V (G), we have

P(|f(G)− g(Br(v1), . . . , Br(vk))| > ε) ≤ ε.

In other words, g estimates f from a sample chosen according to the rules of sampling
from a bounded degree graph. Elek [23] proved that a graph parameter is estimable if
and only if it is convergent for every Benjamini–Schramm convergent graph sequence.

Theorem 14.1.2 (Elek [23]). A bounded graph parameter f is estimable if and only
if for every Benjamini–Schramm convergent graph sequence (Gn)n, the sequence of
numbers (f(Gn))n is convergent.

78



So Benjamini–Schramm convergence coincide with a very natural setting for es-
timating a graph parameter.

14.2 Empirical measures

14.2.1 Matching polynomial revisited

Recall that the matching polynomial of a graph G is defined as follows. Let

µG(z) =

n/2∑
k=0

(−1)kmk(G)zn−2k,

where mk(G) denotes the number of matchings of size k.
We have seen that all zeros of the matching polynomial µG(z) are real. Fur-

thermore, if the largest degree ∆ satisfies ∆ ≥ 2, then all zeros lie in the interval
(−2

√
∆− 1, 2

√
∆− 1).

Let µG(z) =
∏n

i=1(z−αi), and sk(G) =
∑n

i=1 α
k
i . We have seen that the quantities

sk(G) have a combinatorial meaning. They count the so-called tree-like walks.
Note that we can introduce sk(Td, o) this way: this is simply the number of closed

walks from a root vertex o of the infinite d-regular tree of length k.
Let ρmG be the uniform measure supported on these roots, that is, given a function

f : C → C we have ∫
f(z)dρmG (z) =

1

v(G)

v(G)∑
i=1

f(αi).

In particular, ∫
zkdρmG (z) =

1

v(G)

v(G)∑
i=1

αk
i =

sk(G)

v(G)
.

There is a measure ρKM called Kesten-McKay measure for which

sk(Td, o) =

∫
zkdρKM(z).

The Kesten-McKay measure has an explicit density function

d
√

4(d− 1)− z2

2π(d2 − z2)
· 1(−ω,ω),

where ω = 2
√
d− 1 and 1(−ω,ω) is the characteristic function of the interval. The

following lemma is a special case of a more general theorem of Csikvári and Frenkel
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[22] about Benjamini–Schramm convergent graph sequences, see also the papers [1,
2].

Lemma 14.2.1. If (Gn)n is a sequence of d-regular graphs with g(Gn) → ∞, then
the measures ρmGn

converge weakly to the Kesten-McKay measure, that is, for every
bounded continuous function f we have

lim
n→∞

∫
f(z)dρmGn

(z) =

∫
f(z)dρKM(z).

The proof of Lemma 14.2.1 is particularly simple since every continuous function
on the interval [−2

√
d− 1, 2

√
d− 1] can be approximated by a polynomial in sup

norm. On the other hand, if k < g(G)/2, then∫
zkdρmG (z) =

sk(G)

v(G)
= sk(Td, o) =

∫
zkdρKM(z).

We will also need the evaluation of certain integrals along the Kesten-McKay
measure.

Lemma 14.2.2. For 0 ≤ z ≤ d− 1 we have

z1/2 exp

(∫
ln

(
d+ z − 1√

z
− t

)
dρKM(t)

)
= (d− 1)

(
(d− 1)2

(d− 1)2 − z

)d/2−1

.

For z > d− 1 we have

z1/2 exp

(∫
ln

(
d+ z − 1√

z
− t

)
dρKM(t)

)
= z

(
1 +

1

z − 1

)d/2−1

.

The proof of Lemma 14.2.2 is actually a simple consequence of the following
theorem of Mckay (see Lemma 3.5 of [39]).

Lemma 14.2.3. Let ω = 2
√
d− 1, and |γ| < 1

ω
. Then∫ ω

−ω

ln(1− γz) dρKM(z) = ln

(
1

η

(
d− 1

d− η

)d/2−1
)
,

where

η =
1− (1− 4(d− 1)γ2)1/2

2(d− 1)γ2
.

Proof of Lemma 14.2.2. Let γ =
√
z

d+z−1
. Note that |γ| < 1

ω
if z ̸= d − 1. The result

follows by continuity if z = d− 1. Then

ln

(
d+ z − 1√

z
− t

)
= ln

(
d+ z − 1√

z

)
+ ln(1− γt).
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Note that
1− 4(d− 1)γ2 =

(d− 1− z)2

(d+ z − 1)2

and so
1− (1− 4(d− 1)γ2)1/2

2(d− 1)γ2
=

{
d+z−1
d−1

if 0 ≤ z ≤ d− 1,
d+z−1

z
if d− 1 ≤ z.

The rest is simple substitution.
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15. Limit Theorems I

15.1 Eulerian orientations

The main theorem of this chapter is the following one.

Theorem 15.1.1. The parameter 1
v(G)

ln ε(G) is estimable for Eulerian graphs, that
is, if (Gn)n is a Benjamini–Schramm convergent sequence of Eulerian graphs, then
limn→∞

1
v(Gn)

ln ε(Gn) exists.

Proof. Recall that the following theorem connects the number of Eulerian orienta-
tions with the subgraph counting polynomial.

Theorem 15.1.2 (Borbényi and Csikvári [7]). For an even number d let s =

(s0, s1, . . . , sd) be defined as follows.

sk =


( d
d/2)(

d/2
k/2)

2d/2(dk)
if k is even,

0 if k is odd.

Then FG(s0, . . . , sd) counts the number of Eulerian orientations of a d–regular graph
G.

The following generalization of Theorem 10.4.1 is also true.

Theorem 15.1.3 (Borbényi and Csikvári [7]). Let G be an Eulerian graph. For each
vertex v ∈ V let us introduce the vector s(v) = (s

(v)
0 , s

(v)
1 , . . . , s

(v)
d(v)), where

s
(v)
k =


( d(v)
d(v)/2)(

d(v)/2
k/2 )

2d(v)/2(d(v)k )
if k is even,

0 if k is odd.

Then FG

((
s
(v)
0 , . . . , s

(v)
d(v)

)
v∈V

)
counts the number of Eulerian orientations of the

graph G.
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For a graph G let us introduce the polynomial

PG(z) = FG

((
s
(v)
0 , s

(v)
1 , . . . , s

(v)
d(v)

)
v∈V

∣∣∣∣ z) ,

where

s
(v)
k =


( d(v)
d(v)/2)(

d(v)/2
k/2 )

2d(v)/2(d(v)k )
if k is even,

0 if k is odd.

Example 15.1.4. For the complete graph K5 on 5 vertices we have

PK5(z) = FK5

(
3

2
, 0,

1

2
, 0,

3

2

∣∣∣∣ z) =
243

32
z20+

45

16
z14+

45

32
z12+

3

8
z10+

45

32
z8+

45

16
z6+

243

32
.

The following picture depicts its zeros.

Figure 15.1: The zeros of PK5(z).

By Theorem 15.1.3 we know that PG(1) = ε(G). Observe that the polynomials

Kv(s
(v)
0 , . . . , s

(v)
d |z) =

d(v)∑
k=0

(
d(v)

k

)
s
(v)
k zk = 2−d(v)/2

(
d(v)

d(v)/2

)
(1 + z2)d(v)/2,

that is, all its zeros lie on the unit circle. By Theorem 11.2.1 it implies that the
zeros of PG(z) also lie on the unit circle. If G has m edges, then the degree of the
polynomial PG(z) is 2m and we can factorize it as follows:

PG(z) = 2−m
∏
v∈V

(
d(v)

d(v)/2

) 2m∏
i=1

(z − ρi),

where |ρi| = 1 for i = 1, . . . , 2m. Let us introduce the following measure on the
complex plane:

µG =
1

2m

2m∑
i=1

δρi ,
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where δs is the Dirac-measure supported on s ∈ C. If k is a fixed non-negative
integer, then ∫

zk dµG(z) =
1

2m

k∑
i=1

ρki .

If PG(z) =
∑2m

k=0 akz
k, then the integral

∫
zk dµG(z) is determined by the numbers

a2m, a2m−1, . . . , a2m−k which in turn are determined by the k-neighborhood statistics
of the graph G. It turns out that it implies that if (Gn)n is a Benjamini–Schramm
convergent graph sequence, then the sequence

∫
zk dµGn(z). The precise details of

this argument is given in the paper [22]. A measure sequence µn on C is convergent
if for any fixed k and ℓ, the sequence

∫
zkzℓ dµn(z) is convergent. Note that µGn is

supported on the unit circle, this is equivalent with the convergence of
∫
zk dµGn(z).

Whence µGn is weakly convergent.
Now let us fix some u ̸= 1 positive real number and consider 1

v(Gn)
lnPGn(u). We

have

1

v(Gn)
lnPGn(u) =

1

v(Gn)
ln

(
2−e(Gn)

∏
v∈V

(
dGn(v)

dGn(v)/2

))
+
2e(Gn)

v(Gn)

∫
ln |u−z| dµGn(z).

Since µGn are supported on the unit circle we get that hu(z) = ln |u−z| is a continuous
function on an open neighborhood of the unit circle. This gives that the sequence

1
v(Gn)

lnPGn(u) exists for u ̸= 1 positive real number.
Let us introduce

pL(u) = lim
n→∞

1

v(Gn)
lnPGn(u).

The final observation is that pL(u) is a monotone increasing continuous function.
This is because PG(z) has only non-negative coefficients and so if u1 < u2, then

PG(u1) ≤ PG(u2) ≤
(
u2

u1

)2m

PG(u1),

whence
1

v(G)
lnPG(u1) ≤

1

v(G)
lnPG(u2) ≤

1

v(G)
lnPG(u1) +

2e(G)

v(G)
ln

(
u2

u1

)
.

This implies that

pL(u1) ≤ pL(u2) ≤ pL(u1) + ∆ ln

(
u2

u1

)
showing that pL(u) is a continuous and monotone increasing function. In particular,
we can introduce pL(1) = limu→1 pL(u) and get that

lim
n→∞

1

v(Gn)
lnPGn(1) = pL(1),
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that is, limn→∞
1

v(Gn)
ln ε(Gn) exists.

15.2 Further remarks*

In this last section we give some remarks on the methods used in this chapter.

15.2.1 Large girth graphs

In this section we determine the limit of 1
v(Gn)

ln ε(Gn) if (Gn)n is a large girth
sequence, that is, g(Gn) → ∞. This limit was determined by Vergnas [53] building
on the work of Schrijver [46] if (Gn)n is a sequence of d-regular graphs. Indeed,
Schrijver proved the lower bound

1

v(G)
ln ε(G) ≥ ln

(
2−d/2

(
d

d/2

))
,

and Vergnas proved a matching upper bound in terms of the maximal number of
pairwise edge-disjoint cycles which is at most dv(G)

g
if g the length of the shortest

cycle.
Here we directly rely on the proof method we did in the previous section.

Theorem 15.2.1. Let (Gn)n be a Benjamini–Schramm convergent sequence of Eu-
lerian graphs with maximum degree ∆ and girth g(Gn) → ∞. Let

tk := lim
n→∞

|{v | dGn(v) = k}|
v(Gn)

(k = 0, . . . ,∆),

then

lim
n→∞

1

v(Gn)
ln ε(Gn) =

∆∑
k=0

tk ln

(
2−k/2

(
k

k/2

))
.

Proof. Recall that for positive real number u ̸= 1 we had the formula

1

v(Gn)
lnPGn(u) =

1

v(Gn)
ln

(
2−e(Gn)

∏
v∈V

(
dGn(v)

dGn(v)/2

))
+
2e(Gn)

v(Gn)

∫
ln |u−z| dµGn(z).

Here the first term converges to

∆∑
k=0

tk ln

(
2−k/2

(
k

k/2

))
.
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We only need to understand the second term. In particular, we need to understand
the limit of the measures µGn . We claim that this limit measure is the uniform
measure on the unit circle. We claim that PG(z) =

∑2m
k=0 akz

k, then a2m−1 = a2m−2 =

· · · = a2m−2g+1 = 0 if the girth is bigger than g. Since ak = a2m−k by the symmetric
nature of the vectors s(v) we only need to see that a1 = · · · = a2g−1 = 0 which
follows since if A ⊆ E satisfies that 0 < |A| < g, then there is a vertex v such that
dA(v) = 1, and then

∏
v∈V s

(v)
dA(v) = 0. From the Newton-Waring formulas we also

get that
∫
zkdµG(z) = 0 for k = 1, . . . , 2g− 1. Since g(Gn) → ∞ we get that for the

limit measure µL we have
∫
zk dµL(z) = 0 for every integer k ≥ 1. Hence µL is the

uniform measure, and

lim
u→1

∫
ln(u− z) dµL(z) = 0.

This completes the proof.

15.2.2 What goes wrong with perfect matchings?

To have a better understanding of the proof strategy used in this paper we care-
fully analyze another graph invariant in this section, namely, the number of perfect
matchings, hereafter denoted by pm(G).

Clearly, if we have a graph with a lot of perfect matchings, and we delete one
vertex the number of perfect matchings drops to zero. This means that we need to
impose some restriction on the graph class. Note that even in the case of Eulerian
orientations we needed to require that the elements of the graph sequence (Gn)n

are Eulerian graphs. Unfortunately, even with the assumption that all Gn are d-
regular bipartite graphs one can construct a sequence of graphs (Gn)n such that

1
v(Gn)

ln pm(Gn) is not convergent [1]. Nevertheless, there is one positive result: it
is convergent if Gn are not only d-regular bipartite graphs, but g(Gn) → ∞ is also
satisfied [1].

It is very instructive to see what goes wrong in the case of the number of per-
fect matchings in our proof. Suppose for simplicity that Gn are 4-regular graphs.
Then pm(G) = FG(0, 1, 0, 0, 0) by the definition of the subgraph counting polyno-
mial. This would not be very useful as FG(0, 1, 0, 0, 0|z) = pm(G)zv(G). Fortunately,
FG(x0, x1, x2, x3, x4) takes the same value at several different places due to some
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invariance under “rotations”, see details in [7]. In particular,

FG(0, 1, 0, 0, 0) = FG

(
1,−1

2
, 0,

1

2
,−1

)
.

For this vector we have

Kv(z) = 1− 2z + 2z3 − z4 = (1− z)3(1 + z),

so all zeros have absolute value 1. (There is always such a vector for (0, 1, 0, . . . , 0)

no matter what d is.) This means that

FG

(
1,−1

2
, 0,

1

2
,−1

∣∣∣∣ z)
have all zeros lying on the unit circle. It even implies that the function
PG(u) := FG

(
1,−1

2
, 0, 1

2
,−1|u

)
is non-negative for real u > 1 implying that for such

a u the
pL(u) := lim

n→∞

1

v(Gn)
lnPGn(u)

exists. If pm(Gn) ̸= 0, then PGn(1) ̸= 0 and we can also deduce that PGn(u) > 0 for
0 < u < 1 so pL(u) exists in this case. Unfortunately, since the coefficients of PG(z)

are not necessarily non-negative we cannot argue that it is monotone increasing, and
that pL(u) is continuous at 1.

Though this strategy does not work in the case of perfect matchings, it is still
instructive to see how gauge transformation gives us a great flexibility to choose the
vectors in such a way that we can apply a Lee-Yang-type theorem.
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16. Limit theorems II

16.1 Introduction

In this chapter we study the asymptotic behaviour of the Tutte polynomial of large
girth regular graphs. For a graph G let g(G) denote the girth of the graph, that is,
the length of the shortest cycle of G. The following theorems due to McKay and
Lyons are the main motivation for us.

Theorem 16.1.1 (McKay [38]). Let (Gn)n be a sequence of random d-regular graphs.
Then asymptotically almost surely we have

lim
n→∞

τ(Gn)
1/v(Gn) =

(d− 1)d−1

(d2 − 2d)d/2−1
.

Theorem 16.1.2 (Lyons [36]). Let (Gn)n be a sequence of connected d-regular graphs
such that limn→∞ g(Gn) = ∞. Then

lim
n→∞

τ(Gn)
1/v(Gn) =

(d− 1)d−1

(d2 − 2d)d/2−1
.

Lyons actually proved a more general result on Benjamini–Schramm convergent
graph sequences.

Our main theorem is an analogue of these theorems for evaluations of the Tutte
polynomial for a wide range of parameters.

Theorem 16.1.3. Let x ≥ 1 and 0 ≤ y ≤ 1. Let d ≥ 2, and let (Gn)n be a sequence
of d-regular graphs such that limn→∞ g(Gn) = ∞. Then

lim
n→∞

TGn(x, y)
1/v(Gn) = td(x, y),

where

td(x, y) =

 (d− 1)
(

(d−1)2

(d−1)2−x

)d/2−1

if x ≤ d− 1 and 0 ≤ y ≤ 1,

x
(
1 + 1

x−1

)d/2−1 if x > d− 1 and 0 ≤ y ≤ 1.
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If (Gn)n is a sequence of random d-regular graphs, then the same statement holds
true asymptotically almost surely. In fact, if L(G, g) denotes the number of cycles of
length at most g − 1 in a graph G, then the same conclusion holds if for every fixed
g we have limn→∞

L(Gn,g)
v(Gn)

= 0.

Note that the case x = 1, y = 1 covers Theorems 16.1.1 and 16.1.2. In case of
d = 2, one needs to define t2(1, y) = 1. Note that for the cycle Cn on n vertices
we have TCn(x, 1) = xn−1

x−1
which shows that limn→∞ TCn(x, 1)

1/n = t2(x, 1) even if
0 ≤ x < 1. We believe that the statement of Theorem 16.1.3 is true for every d when
0 ≤ x < 1 and 0 ≤ y ≤ 1 except when x = y = 0, but our proof does not work in this
case. Naturally, we can introduce the function td(x, y) for every x and y the way it
is defined in Theorem 16.1.3, but it is not a priori clear that the corresponding limit
exists. The authors conjecture that the limit indeed exists whenever x, y > 0, and if
the graphs (Gn)n do not contain loops and bridges, then we can also allow x = 0 or
y = 0. Let us mention that td(x, y) will depend on y if y is large enough in terms of
x.

For the number of spanning forests (F (G) = TG(2, 1)) and acyclic orientations
(a(G) = TG(2, 0)) we immediately get the following statement.

Theorem 16.1.4. Let (Gn)n be a sequence of d-regular graphs such that limn→∞ g(Gn) =

∞. Let F (G) denote the number of spanning forests of the graph G. Similarly, let
a(G) denote the number of acyclic orientations of the graph G. Then

lim
n→∞

F (Gn)
1/v(Gn) = lim

n→∞
a(Gn)

1/v(Gn) =
(d− 1)d−1

(d2 − 2d− 1)d/2−1
.

If (Gn)n is a sequence of random d-regular graphs, then the same statement holds
true asymptotically almost surely. In fact, if L(G, g) denotes the number of cycles of
length at most g − 1 in a graph G, then the same conclusion holds if for every fixed
g we have limn→∞

L(Gn,g)
v(Gn)

= 0.

We note that the special case of Theorem 16.1.4, when d = 3, was previously
proved by Borbényi, Csikvári and Luo [8].

16.2 Proof of Theorems 16.1.4 and 16.1.3 for y = 1

In this part, we prove Theorems 16.1.4 and 16.1.3 for y = 1.
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Note that for a d-regular graph G we have

RG(z) =
∑

M∈M(G)

(−z)|M |(d+ z − 1)n−2|M | = zn/2µG

(
d− 1 + z√

z

)
.

Proof of Theorems 16.1.4 and 16.1.3. Let x = z + 1. First we assume that x > 1,
that is, z > 0. The claim will follow for x = 1 by continuity, see the end of the proof.
Recall that FG(z) = zk(G)TG(z + 1, 1). By Theorem 13.3.1 we have(

1 +
gd

z

)−L−n/g

RG(z + 1) ≤ FG(z) ≤ RG(z + 1)

if G contains at most L cycles of length at most g − 1. Thus

lim
n→∞

FGn(z)
1/v(Gn) = lim

n→∞
RGn(z + 1)1/v(Gn).

In case of a random d-regular graph sequence (Gn)n we use the fact that L =

Og,d(1) = o(v(Gn)) asymptotically almost surely.
Since

RG(z) =
∑

M∈M(G)

(−z)|M |(d+ z − 1)n−2|M | = zv(G)/2µG

(
d− 1 + z√

z

)
for d-regular graphs we have

1

v(G)
lnRG(z + 1) =

1

2
ln(z + 1) +

1

v(G)
lnµG

(
d+ z√
z + 1

)
.

Let us introduce the notation u := d+z√
z+1

. Note that

u =
d+ z√
z + 1

=
(d− 1) + z + 1√

z + 1
=

d− 1√
z + 1

+
√
z + 1 ≥ 2

√
d− 1

and we have strict inequality if z + 1 ̸= d− 1. Thus

1

v(G)
lnRG(z + 1) =

1

2
ln(z + 1) +

1

v(G)
lnµG(u).

Here
1

v(G)
lnµG(u) =

1

v(G)

n∑
i=1

ln(u− αi) =

∫
ln(u− t) dρmG (t).

If z + 1 ̸= d − 1, then the function ln(u − t) is a bounded continuous function on
the interval (−2

√
d− 1, 2

√
d− 1) and ρmGn

converges weakly to the Kesten-McKay
measure. Hence

lim
n→∞

∫
ln(u− t) dρmGn

(t) =

∫
ln(u− t) dρKM(t).
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Putting these facts together we get that

lim
n→∞

FGn(z)
1/v(Gn) = (z + 1)1/2 exp

(∫
ln

(
d+ z√
z + 1

− t

)
dρKM(t)

)
= td(z + 1, 1),

where in the last step we used Lemma 14.2.2. If z + 1 = d− 1 then the claim is still
true since FG(z) is a continuous, monotone increasing function just as the function
td(z + 1, 1). So if for every z ̸= d − 2 we have limn→∞ FGn(z)

1/v(Gn) = td(z + 1, 1),
then it is also true at z = d− 2. Hence

lim
n→∞

((x− 1)k(Gn)TGn(x, 1))
1/v(Gn) = td(x, 1)

for all x > 1, that is,
lim
n→∞

TGn(x, 1)
1/v(Gn) = td(x, 1).

Finally, for x = 1 we can conclude as follows. Since the coefficients of TG(x, 1) are
non-negative and its degree is v(G)− k(G) we get that for x > 1 we have

TG(1, 1) ≤ TG(x, 1) ≤ xv(G)TG(1, 1).

Hence
lim sup
n→∞

TGn(1, 1)
1/v(Gn) ≤ lim sup

n→∞
TGn(x, 1)

1/v(Gn) = td(x, 1)

and
lim inf
n→∞

TGn(1, 1)
1/v(Gn) ≥ lim inf

n→∞
(x−v(Gn)TGn(x, 1))

1/v(Gn) =
td(x, 1)

x
.

Since limx↘1 td(x, 1) = limx↘1
td(x,1)

x
= td(1, 1) we get that

lim
n→∞

TGn(1, 1)
1/v(Gn) = td(1, 1).

Finally, in the particular case when x = 2 we get that

lim
n→∞

F (Gn)
1/v(Gn) = td(2, 1) = (d− 1)

(
(d− 1)2

d2 − 2d− 1

)d/2−1

.

16.3 Proof of Theorems 16.1.4 and 16.1.3 for 0 ≤
y < 1

In this part we prove Theorems 16.1.4 and 16.1.3 for 0 ≤ y < 1. We only prove this
part when g(Gn) → ∞. The case when we allow a small number of short cycles is
very similar.
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The plan is that we reduce this case to the case y = 1. Recall that Theorem 6.4.5
claims that for a graph G with n vertices, m edges and the length of the shortest
cycle is g, we have

TG(x, 0) ≥ TG(x, 1)

(
1− 1

g

)m−n+1

.

It shows that

1

v(G)
lnTG(x, 1) ≥

1

v(G)
lnTG(x, 0) ≥

1

v(G)
lnTG(x, 1)+

(
d

2
− 1 +

1

v(G)

)
ln

(
1− 1

g

)
.

Since for g(Gn) → ∞ we get that

lim
n→∞

1

v(Gn)
lnTGn(x, 1) = lim

n→∞

1

v(Gn)
lnTGn(x, 0).

Since for 0 < y < 1 we also have TG(x, 0) ≤ TG(x, y) ≤ TG(x, 1) by the non-negativity
of the coefficients of the Tutte polynomial we also get that limn→∞

1
v(Gn)

lnTGn(x, y)

has the same limit.
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17. Limit theorems III

17.1 Introduction

The main theorem of this chapter is the following.

Theorem 17.1.1. Let (Gn)n be a sequence of d-regular graphs such that limn→∞ g(Gn) =

∞. Then the limit
lim
n→∞

ZGn(q, w)
1/v(Gn) = Φd,q,w

exists for q ≥ 2 and w ≥ 0. The quantity Φd,q,w can be computed as follows. Let

Φd,q,w(t) :=

(√
1 +

w

q
cos(t) +

√
(q − 1)w

q
sin(t)

)d

+(q−1)

(√
1 +

w

q
cos(t)−

√
w

q(q − 1)
sin(t)

)d

,

then Φd,q,w := maxt∈[−π,π] Φd,q,w(t).

We will not give the entire proof of this theorem, but we will give a detailed
description of the ideas used to prove the statement.

17.2 Underlying ideas of the proof

In this section we collected the various steps of the proof of Theorem 17.1.1

17.2.1 Approximation

The first step of the proof is the combinatorial approximation introduced in Chap-
ter 12. Recall that the so-called rank 2 approximation is defined as

Z
(2)
G (q, w) =

∑
S⊆V

(1 + w)e(S)(q − 1)v(G)−|S|
(
1 +

w

q − 1

)e(G−S)

.
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We have seen that for the matrix M ′
2 and ν2

M ′
2 =

(
1 + w 1

1 1 + w
q−1

)
and ν2 =

(
1

q − 1

)
,

we have
Z

(2)
G (q, w) = ZG(M

′
2, ν2).

By Theorem 12.3.3 we have that for a graph G on n vertices with L = L(G, g)

cycles of length at most g − 1, and q ≥ 2 we have

Z
(2)
G (q, w) ≤ ZG(q, w) ≤ qn/g+LZ

(2)
G (q, w).

This shows that if Gn is a graph sequence Benjamini–Schramm convergent to the
infinite d-regular tree Td we have

lim
n→∞

ZGn(q, w)
1/v(Gn) = lim

n→∞
Z

(2)
Gn

(q, w)1/v(Gn)

if one of the limit exists.

17.2.2 Subgraph counting polynomial

In the next step of the proof we study limn→∞ Z
(2)
Gn

(q, w)1/v(Gn). Here we use that
Z

(2)
Gn

(q, w) can be encoded via the subgraph counting polynomial.
We can apply the argument at the end of Chapter 9 to N = M ′

2, µ = ν2 with the
following vectors.

a =

 √
1 + w

q√
1 + w

q

 and b =

 √
(q−1)w

q

−
√

w
q(q−1)

 .

One can check that M ′
2 = aaT + bbT indeed holds true. We can again introduce the

vectors a(t), b(t) giving rise to a vector v(t) = (r0(t), . . . , rd(t)) such that

FG(v(t)) = ZG(M
′
2, ν2) = Z

(2)
G (q, w).

In this case

rj(t) =
2∑

k=1

µka(t)
d−j
k b(t)jk
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=

(√
1 +

w

q
cos(t) +

√
(q − 1)w

q
sin(t)

)d−j (
−
√

1 +
w

q
sin(t) +

√
(q − 1)w

q
cos(t)

)j

+ (q − 1)

(√
1 +

w

q
cos(t)−

√
w

q(q − 1)
sin(t)

)d−j (
−
√

1 +
w

q
sin(t)−

√
w

q(q − 1)
cos(t)

)j

.

In particular,

r0(t) =

(√
1 +

w

q
cos(t) +

√
(q − 1)w

q
sin(t)

)d

+(q−1)

(√
1 +

w

q
cos(t)−

√
w

q(q − 1)
sin(t)

)d

.

In other words, r0(t) = Φd,q,w(t).

17.2.3 Lower bound

In the third step of the proof one can show that for any non-negative positive definite
matrix N , and in particular to M ′

2 it is true that the value t0 that maximizes r0(t) we
have r1(t0) = 0, and r2j(t0) ≥ 0 for all j ≤ d/2, and r2j+1(t0) ≥ 0 for all j ≤ (d−1)/2

or r2j+1(t0) ≤ 0 for all j ≤ (d − 1)/2. Since any subgraph has an even number of
odd degree vertex this immediately implies that

Z
(2)
G (q, w) = FG(r0(t0), . . . , rd(t0)) ≥ r0(t0)

v(G) = Φ
v(G)
d,q,w.

17.2.4 Lee-Yang theorem again and convergence

The fourth step of the proof is to show that there exists a t1 such that the polynomial

PG(z) := FG(r0(t1), r1(t1)z, r2(t1)z
2, . . . , rd(t1)z

d)

has all zeros lying on a circle centered at 0. In order to prove it one needs to check
the condition of Theorem 11.2.1, that is, one needs to prove that for some t1 all zeros
of

Pd,t1(z) :=
d∑

k=0

(
d

k

)
rk(t1)z

k

lie on a circle centered at 0. It turns out that for any t the zeros of Pd,t(z) lie on
a circle, but one needs some extra work to show that there is a t1 for which the
center of this circle is at 0. It turns out that the radius of the circle is almost
never 1, so we can actually argue that the sequence 1

v(Gn)
lnPGn(1) –which is equal
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to 1
v(Gn)

lnZ
(2)
Gn

(q, w)– is converging for a Benjamini–Schramm convergent graph se-
quence of d–regular graphs Gn. The proof of this fact works the same way as for the
number of Eulerian orientations. In the rare case when the radius of circle is 1 one
can use continuity argument.

17.2.5 The value of the limit

Once we know that the limit exists for any Benjamini–Schramm convergent graph
sequence of d–regular graphs Gn we need a last step to prove that for a graph sequence
Gn converging to Td the limit of 1

v(Gn)
lnZ

(2)
Gn

(q, w) is lnΦd,q,w. Here one can use that
for random d-regular graphs on n vertices one can show that

EZ(2)
G (q, w) = poly(n)Φn

d,q,w.

(Note that one needs to use the so-called configuration model of random d-regular
graphs. This model is exceptionally suitable to compute such kind of expected
values.) In general, it is easy to compute EZG(N,µ), but it needs some work to
show that in the obtained formula the exponential growth constant is indeed Φd,q,w.
Finally, taking a sequence of random d-regular graphs in general it can occur that
the limits

ϕ1 := lim
n→∞

1

n
lnEZG(N,µ) and ϕ2 := lim

n→∞

1

n
E(lnZG(N,µ))

are different, but it is always true that ϕ1 ≤ ϕ2. But since we know that ϕ1 = lnΦd,q,w

for N = M ′
2 and µ = ν and ϕ2 ≥ lnΦd,q,w since Z

(2)
G (q, w) ≥ Φ

v(G)
d,q,w from the third

step we immediately get that ϕ1 = ϕ2 = lnΦd,q,w. This finishes the proof.
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18. Problems and conjectures

In this chapter I give various problems and conjectures. The numbers behind the
conjectures have the following meaning:
2. Possibly doable.
3. I can imagine that there is some simple solution, and is very likely publishable.
4. Probably very hard, clearly publishable.
5. Famous open problem, publishable in a strong journal.
Note that since I do not know the solution for any problem, I might be very wrong
about the difficulty level of a particular question or conjecture.

18.1 Permutation Tutte polynomial

Problem 18.1.1 (2). Is it true that for any bipartite graph H and b = a2 + 2a we
have

T̃H(b, 0)T̃H(0, b) ≥ T̃H(a, a)
2?

For the Tutte polynomial TG(x, y) Conjecture 18.1.1 was proved by Jackson and
as we have seen the case a = 1 can be proved by FKG-inequality. I can prove this
conjecure with b = 3a2 for a ≥ 1 instead of b = a2 + 2a. In some sense the growth
b ∼ a2 is necessary.

Problem 18.1.2 (3). What is the smallest β for which

T̃H(β, 0)T̃H(0, β) ≥ T̃H(1, 1)
2

for every bipartite graph H? (Any improvement over the current best would be
great.)
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18.2 Zeros

Conjecture 18.2.1 (4). Let G be a graph with maximum degree d. Suppose that
TG(ξ, 1) = 0. Then |ξ| ≤ d− 1.

The tightness of the above conjecture is also a problem.

Problem 18.2.2 (4). Suppose that (Gn)n is a sequence of large girth graphs. Then
the zeros of TGn(x, 1) converge to the circle of radius d− 1 on the complex plane.

All these questions are partly motivated by the following conjecture of Sokal
about the zeros of the chromatic polynomial.

Conjecture 18.2.3 (5). Let G be graph with maximum degree ∆. Show that
ch(G, ξ) ̸= 0 if Re(ξ) ≥ ∆+ 1.

18.3 Correlation

I call the following conjecture the rectangle correlation inequality.

Conjecture 18.3.1 (3). Prove that for 0 < x1 < x2 and 0 < y1 < y2 and for every
graph G we have

TG(x1, y2)TG(x2, y1) ≥ TG(x1, y1)TG(x2, y2).

The above conjecture is true if (x2 − 1)(y2 − 1) ≥ 1. There is a stronger version
of the above conjecture.

Conjecture 18.3.2 (4). Let SG(x1, x2, y1, y2) be defined by the following identity:

(y2 − y1)(x2 − x1)SG(x1, x2, y1, y2) = TG(x1, y2)TG(x2, y1)− TG(x1, y1)TG(x2, y2).

Then all coefficients of SG(x1, x2, y1, y2) are non-negative.

18.4 Graph limits

Conjecture 18.4.1 (3). Let (Gn)n be a Benjamini–Schramm convergent graph se-
quence. Let N a 2 × 2 positive definite matrix with positive entries, and µ ∈ R2 a
positive vector. Then

lim
n→∞

ZGn(N,µ)1/v(Gn)

exists.
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When N11 = N22 or µ1 = µ2, then Conjecture 18.4.1 is known to be true. One
may even conjecture that the statement is even true if N ∈ Rq×q is a positive definite
matrix with positive entries and µ ∈ Rq with positive entries.

Conjecture 18.4.2 (5). Let (Gn)n be a Benjamini–Schramm convergent graph se-
quence. Then for any x, y > 0 the limn→∞ TGn(x, y)

1/v(Gn) exists.
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