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1. Spectral Graph Theory

All graphs in this chapter are simple if otherwise not stated, i. e., there are no loops

and multiple edges. (Actually, it will be otherwise stated in some proof in the section

on the Laplacian-matrix, where it will be convenient to allow multiple edges.)

Apart from the last section on Laplacian-matrix we are concerning with the

adjacency matrix of a graph G. The adjacency matrix A(G) of a simple graph

G = (V,E) is defined as follows: it is a symmetric matrix of size |V | × |V | labelled

by the vertices of the graph G, and

A(G)u,v =

{
1 if (u, v) ∈ E(G),

0 if (u, v) /∈ E(G).

If the graph G is clear from the context we will simple write A instead of A(G).

It is important to understand what it means that we multiply a vector x ∈ RV

with A(G):

(Ax)u =
∑

v∈V (G)

Au,vxv =
∑

v∈NG(u)

xv,

where NG(u) is the set of neighbors of u in the graph G. So multiplication with

A(G) simply means that we add up the values of the vector on the neighbors of a

vertex u and we write this sum in place of u. In particular, if x is an eigenvector of

A, i. e., Ax = λx then for all vertex u we have

λxu =
∑

v∈NG(u)

xv.

Recall from linear algebra that since A is a real symmetric matrix all eigenvalues

are real, and we can choose a basis consisting of orthonormal eigenvectors. Note

that if Ax = λx and Ay = µy and λ 6= µ then x and y is immediately orthogonal

to each other. If λ = µ it is not necessarily true, but we can still choose orthogonal

eigenvectors from this eigenspace.
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The goal of this chapter to give a very brief account to spectral graph theory.

Here we try to understand the connection between the eigenvalues of the adjacency

matrix and the properties of the graph. For instance, it will turn out that the largest

eigenvalue is a degree-like concept that is sandwiched between the average degree

and the largest degree of the graph. The other eigenvalues of the graph grasp the

pseudorandomness and expansion properties of the graph.

Suggested reading:

A. E. Brouwer and W. H. Haemers: Spectra of Graphs [3]. An earlier version of the

book is available online.

J. Matousek: Thirty-three miniatures: mathematical and algorithmic applications of

linear algebra [8]

R. Stanley: Topics in algebraic combinatorics [10]

These books are also available online. In the latter case, the online version doesn’t

contain exercises. Besides the books I would like to call attention to the extensive

resources provided by the SageMath software. For more details, see Section 1.5.

1.1 Just linear algebra

Many of the things described in this section is just the Frobenius–Perron theory

specialized for our case. On the other hand, we will cheat. Our cheating is based

on the fact that we will only work with symmetric matrices, and so we can do some

shortcuts in the arguments.

We will use the fact many times that if A is a n × n real symmetric matrix

then there exists a basis of Rn consisting of eigenvectors which we can choose1 to

be orthonormal. Let u1, . . . , un be the orthonormal eigenvectors belonging to λ1 ≥
· · · ≥ λn: we have Aui = λiui, and (ui, uj) = δij.

Let us start with some elementary observations.

Proposition 1.1.1. If G is a simple graph then the eigenvalues of its adjacency

matrix A satisfies
∑

i λi = 0 and
∑
λ2
i = 2e(G), where e(G) denotes the number of

edges of G. In general,
∑
λ`i counts the number of closed walks of length `.

1For the matrix I, any basis will consists of eigenvectors as every vectors are eigenvectors, but

of course they won’t be orthonormal immediately.
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Proof. Since G has no loop we have∑
i

λi = TrA = 0.

Since G has no multiple edges, the diagonal of A2 consists of the degrees of G. Hence∑
i

λ2
i = TrA2 =

∑
di = 2e(G).

The third statement also follows from the fact TrA` is nothing else than the number

of closed walks of length `.

Using the next well-known statement, Proposition 1.1.2, one can refine the pre-

vious statement such a way that the number of walks of length ` between vertex i

and j can be obtained as ∑
k

ck(i, j)λ
`
k.

The constant ck(i, j) = uikujk if uk = (u1k, u2k, . . . , unk).

Proposition 1.1.2. Let U = (u1, . . . , un) and S = diag(λ1, . . . , λn), then

A = USUT

or equivalently

A =
n∑
i=1

λiuiu
T
i .

Consequently, we have

A` =
n∑
i=1

λ`iuiu
T
i .

Proof. First of all, note that UT = U−1 as the vectors ui are orthonormal. Let

B = USUT . Let ei = (0, . . . , 0, 1, 0, . . . , 0), where the i’th coordinate is 1. Then

Bui = USUTui = USei = (λ1u1, . . . , λnun)ei = λiui = Aui.

So A and B coincides on a basis, hence A = B.

Let us turn to the study of the largest eigenvalue and its eigenvector.

Proposition 1.1.3. We have

λ1 = max
||x||=1

xTAx = max
x 6=0

xTAx

||x||2
.

Further, if for some vector x we have xTAx = λ1||x||2, then Ax = λ1x.
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Proof. Let us write x in the basis u1, . . . un:

x = α1u1 + · · ·+ αnun.

Then

||x||2 =
n∑
i=1

α2
i .

and

xTAx =
n∑
i=1

λiα
2
i .

From this we immediately see that

xTAx =
n∑
i=1

λiα
2
i ≤ λ1

n∑
i=1

α2
i = λ1||x||2.

On the other hand,

uT1Au1 = λ1||u1||2.

Hence

λ1 = max
||x||=1

xTAx = max
x 6=0

xTAx

||x||2
.

Now assume that we have xTAx = λ1||x||2 for some vector x. Assume that λ1 =

· · · = λk > λk+1 ≥ · · · ≥ λn, then in the above computation we only have equality if

αk+1 = · · · = αn = 0. Hence

x = α1u1 + · · ·+ αkuk,

and so

Ax = λ1x.

Proposition 1.1.4. Let A be a non-negative symmetric matrix. There exists a non-

zero vector x = (x1, . . . , , xn) for which Ax = λ1x and xi ≥ 0 for all i.

Proof. Let u1 = (u11, u12, . . . , u1n). Let us consider x = (|u11|, |u12|, . . . , |u1n|). Then

||x|| = ||u1|| = 1 and

xTAx ≥ uT1Au1 = λ1.

Then xTAx = λ1 and by the previous proposition we have Ax = λ1x. Hence x

satisfies the conditions.
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Proposition 1.1.5. Let G be a connected graph, and let A be its adjacency matrix.

Then

(a) If Ax = λ1x and x 6= 0, then no entries of x is 0.

(b) The multiplicity of λ1 is 1.

(c) If Ax = λ1x and x 6= 0, then all entries of x have the same sign.

(d) If Ax = λx for some λ and xi ≥ 0, where x 6= 0, then λ = λ1.

Proof. (a) Let x = (x1, . . . , xn) and y = (|x1|, . . . , |xn|). As before we have ||y|| =

||x||, and

yTAy ≥ xTAx = λ1||x||2 = λ1||y||2.

Hence

Ay = λ1y.

Let H = {i |yi = 0} and V \H = {i |yi > 0}. Suppose for contradiction that H is

not empty. Note that V \H is not empty either as x 6= 0. On the other hand, there

cannot be any edge between H and V \H: if i ∈ H and j ∈ V \H and (i, j) ∈ E(G),

then

0 = λ1yi =
∑
j

aijyj ≥ yj > 0

contradiction. But if there is no edge between H and V \ H then G would be

disconnected, which contradicts the condition of the proposition. So H must be

empty.

(b) Assume that Ax1 = λ1x1 and Ax2 = λ1x2, where x1 and x2 are independent

eigenvectors. Note that by part (a), the entries of x1 is not 0, so we can choose a

constant c such that the first entry of x = x2 − cx1 is 0. Note that Ax = λ1x and

x 6= 0 since x1 and x2 were independent. But then x contradicts part (a).

(c) If Ax = λ1x, and y = (|x1|, . . . , |xn|) then we have seen before that Ay = λ1y.

By part (b), we know that x and y must be linearly dependent so x = y or x = −y.

Together with part (a), namely that there is no 0 entry, this proves our claim.

(d) Let Au1 = λ1u1. By part (c), all entries have the same sign, we can choose it

to be positive by replacing u1 with −u1 if necessary. Suppose for contradiction that

λ 6= λ1. Note that if λ 6= λ1 then x and u1 are orthogonal, but this cannot happen
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as all entries of both x and u1 are non-negative, further they are positive for u1, and

x 6= 0. This contradiction proves that λ = λ1.

So part (c) enables us to recognize the largest eigenvalue from its eigenvector:

this is the only eigenvector consisting of only positive entries (or actually, entries of

the same sign).

Proposition 1.1.6. (a) Let H be a subgraph of G. Then λ1(H) ≤ λ1(G).

(b) Further, if G is connected and H is a proper subgraph, then λ1(H) < λ1(G).

Proof. (a) Let x be an eigenvector of length 1 of the adjacency matrix of H such

that it has only non-negative entries. Then

λ1(H) = xTA(H)x ≤ xTA(G)x ≤ max
||z||=1

zTA(G)z = λ1(G).

In the above computation, if H has less number of vertices than G, then we complete

x with 0’s in the remaining vertices and we denote the obtained vector with x too

in order to make sense for xTA(G)x.

(b) Suppose for contradiction that λ1(H) = λ1(G). Then we have equality every-

where in the above computation. In particular xTA(G)x = λ1(G). This means that

x is eigenvector of A(G) too. Since G is connected x must be a (or rather ”the”)

vector with only positive entries by part (a) of the above proposition. But then

xTA(H)x < xTA(G)x, a contradiction.

Proposition 1.1.7. (a) We have |λn| ≤ λ1.

(b) Let G be a connected graph and assume that −λn = λ1. Then G is bipartite.

(c) G is a bipartite graph if and only if its spectrum is symmetric to 0.

Proof. (a) Let x = (x1, . . . , xn) be a unit eigenvector belonging to λn, and let y =

(|x1|, . . . , |xn|). Then

|λn| = |xTAx| =
∣∣∣∑ aijxixj

∣∣∣ ≤∑ aij|xi||xj| = yTAy ≤ max
||z||=1

zTAz = λ1.

(Another solution can be given based on the observation that 0 ≤ TrA` =
∑
λ`i . If

|λn| > λ1 then for large enough odd ` we get that
∑
λ`i < 0.)
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(b) Since λ1 ≥ · · · ≥ λn, the condition can only hold if λ1 ≥ 0 ≥ λn. Again let

x = (x1, . . . , xn) be a unit eigenvector belonging to λn, and let y = (|x1|, . . . , |xn|).
Then

λ1 = |λn| = |xTAx| =
∣∣∣∑ aijxixj

∣∣∣ ≤∑ aij|xi||xj| = yTAy ≤ max
||z||=1

zTAz = λ1.

We need to have equality everywhere. In particular, y is the positive eigenvector

belonging to λ1, and all aijxixj have the same signs which can be only negative

since λn ≤ 0. Hence every edge must go between the sets V − = {i | xi < 0} and

V + = {i | xi > 0}. This means that G is bipartite.

(c) First of all, if G is a bipartite graph with color classes A and B then the following

is a linear bijection between the eigenspace of the eigenvalue λ and the eigenspace of

the eigenvalue −λ: if Ax = λx then let y be the vector which coincides with x on A,

and −1 times x on B. It is easy to check that this will be an eigenvector belonging

to −λ.

Next assume that the spectrum is symmetric to 0. We prove by induction on

the number of vertices that G is bipartite. Since the spectrum of the graph G is the

union of the spectrum of the components there must be a component H with smallest

eigenvalue λn(H) = λn(G). Note that λ1(G) = |λn(G)| = |λn(H)| ≤ λ1(H) ≤ λ1(G)

implies that λ1(H) = −λn(H). Since H is connected we get that H is bipartite and

its spectrum is symmetric to 0. Then the spectrum of G\H has to be also symmetric

to 0. By induction G \H must be bipartite. Hence G is bipartite.

Proposition 1.1.8. Let ∆ be the maximum degree, and let d denote the average

degree. Then

max(
√

∆, d) ≤ λ1 ≤ ∆.

Proof. Let v = (1, 1, . . . , 1). Then

λ1 ≥
vTAv

||v||2
=

2e(G)

n
= d.

If the largest degree is ∆ then G contains K1,∆ as a subgraph. Hence

λ1(G) ≥ λ1(K1,∆) =
√

∆.

Finally, let x be an eigenvector belonging to λ1. Let xi be the entry with largest

absolute value. Then

|λ1||xi| =

∣∣∣∣∣∑
j

aijxj

∣∣∣∣∣ ≤∑
j

aij|xj| ≤
∑
j

aij|xi| ≤ ∆|xi|.
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Hence λ1 ≤ ∆.

Proposition 1.1.9. Let G be a d-regular graph. Then λ1 = d and its multiplicity

is the number of components. Every eigenvector belonging to d is constant on each

component.

Proof. The first statement already follows from the previous propositions, but it

also follows from the second statement so let us prove this statement. Let x be an

eigenvector belonging to d. We show that it is constant on a connected component.

Let H be a conncted component, and let c = maxi∈V (H) xi, let Vc = {i ∈ V (H) | xi =

c} and V (H) \ Vc = {i ∈ V (H) | xi < c}. If V (H) \ Vc were not empty then there

exists an edge (i, j) ∈ E(H) such that i ∈ Vc, j ∈ V (H) \ Vc. Then

dc = dxi =
∑
k∈N(i)

xk ≤ xj +
∑

k∈N(i),k 6=j

xk < c+ (d− 1)c = dc,

contradiction. So x is constant on each component.

1.2 Expanders and pseudorandom graphs

In this section G always will be a d–regular graph. The goal of this section is to

show how λ2 and λn measures the ”randomness” of the graph.

Let S, T ⊆ V (G). Let

e(S, T ) = |{(u, v) ∈ E(G) | u ∈ S, v ∈ T}|.

Note that in the above definition, S and T are not necessarily disjoint. For instance,

if S = T , then maybe a bit counter intuitively, e(S, S) counts 2 times the number of

edges induced by the set S. If G were random then we would expect e(S, T ) ≈ d |S||T |
n

.

Theorem 1.2.1. Let G be a d–regular graph on n vertices with eigenvalues d = λ1 ≥
λ2 ≥ · · · ≥ λn. Let S, T ⊆ V (G) such that S ∪ T = V (G) and S ∩ T = ∅. Then

(d− λ2)
|S||T |
n
≤ e(S, T ) ≤ (d− λn)

|S||T |
n

.

Before we start proving this theorem, we need a lemma.

Lemma 1.2.2. Let A be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn

and corresponding orthornormal eigenvectors u1, . . . , un. Then
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(a)

min
x 6=0

xTAx

||x||2
= λn.

(b)

max
x⊥u1

xTAx

||x||2
= λ2.

Proof. (a) Let x = α1u1 + · · ·+ αnun. Then

xTAx =
n∑
i=1

λiα
2
i ≥ λn

n∑
i=1

α2
i = λn||x||2.

On the other hand, uTnAun = λn||un||2. This proves part (a).

(b) Again let x = α1u1 + · · ·+ αnun. Since x ⊥ u1 we have α1 = (x, u1) = 0. Then

xTAx =
n∑
i=1

λiα
2
i =

n∑
i=2

λiα
2
i ≤ λ2

n∑
i=1

α2
i = λ2||x||2.

On the other hand, uT2Au2 = λ2||u2||2. This proves part (b).

Proof of the theorem. Let |S| = s and |T | = t. Let us consider the vector x which

takes the value t on the vertices of S and the value −s on the vertices of T . Then x

is perpendicular to the all 1 vector, indeed |S|t − |T |s = 0. Note that u1 = 1√
n
1 so

x is perpendicular to u1. Let us consider∑
(i,j)∈E(G)

(xi − xj)2 = d
n∑
i=1

x2
i − 2

∑
(i,j)∈E(G)

xixj = d||x||2 − xTAx.

First of all, by the lemma we have

(d− λ2)||x||2 ≤ d||x||2 − xTAx ≤ (d− λn)||x||2.

On the other hand,∑
(i,j)∈E(G)

(xi − xj)2 = e(S, T )(t− (−s))2 = e(S, T )(s+ t)2 = e(S, T )n2.

Note that

||x||2 = ts2 + st2 = st(s+ t) = stn.

Hence

(d− λ2)nst ≤ e(S, T )n2 ≤ (d− λn)nst.
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In other words,

(d− λ2)
st

n
≤ e(S, T ) ≤ (d− λn)

st

n
.

Definition 1.2.3. Let S ⊆ V (G). The set of neighbors of S is

N(S) = {u ∈ V (G) \ S | ∃v ∈ S : (u, v) ∈ E(G)}.

Definition 1.2.4. A graph G is called (n, d, c)-expander if |V (G)| = n, it is d–regular

and

|N(S)| ≥ c|S|

for every set S satisfying |S| ≤ n/2.

Intuitively, the larger the c, the better your network (your graph G) is: if you

have a gossip then it spreads in a fast way in a good expander.

Theorem 1.2.5. A d–regular graph G on n vertices is an (n, d, c)–expander with

c = d−λ2
2d

.

Proof. Let S ⊆ V (G) with |S| ≤ n/2. Let T = V (G)\S, note that |T | ≥ n/2. Then

e(S, T ) = e(S,N(S)) ≤ d|N(S)|.

By Theorem 1.2.1 we have

e(S, T ) ≥ (d− λ2)
|S||T |
n
≥ (d− λ2)|S|1

2
.

Hence

d|N(S)| ≥ d− λ2

2
|S|.

In other words,

|N(S)| ≥ d− λ2

2d
|S| = c|S|.

The quantity d− λ2 is called spectral gap.

Let’s see another corollary of Theorem 1.2.1. First we start with a definition.

Definition 1.2.6. A set S ⊆ V (G) is called an independent set if it induces the

empty graph. (In other words, e(S, S) = 0.) The size of the largest independent set

is denoted by α(G).
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Theorem 1.2.7. (Hoffman-Delsarte bound) Let G be a d–regular graph on n vertices

with eigenvalues d = λ1 ≥ λ2 ≥ · · · ≥ λn. Then

α(G) ≤ −λnn
d− λn

.

Proof. Let S be the largest independent set, and T = V (G) \ S. Then |S| = α(G),

and e(S, T ) = d|S| = dα(G). By Theorem 1.2.1 we have

e(S, T ) ≤ (d− λn)
|S||T |
n

.

Hence

dα(G) ≤ (d− λn)
α(G)(n− α(G))

n
.

By dividing by α(G) and multiplying by n/(d− λn) we get that

nd

d− λn
≤ n− α(G).

In other words,

α(G) ≤ −λnn
d− λn

.

The Hoffman-Delsarte bound is surprisingly good in a number of cases. Let’s see

a bit strange application. A family F = {A1, A2, . . . , Am} is called intersecting if

Ai ∩ Aj 6= ∅. Assume that Ai ⊆ {1, 2, . . . , n}, and |Ai| = k for all i. The question

is the following: what’s the largest possible intersecting family of k-element subsets

of {1, 2, . . . , n}? If k > n/2 then any two k-subset is intersecting so the question is

trivial. So let us assume that k ≤ n/2. A good candidate for a large intersecting

family is the family F1 of those subsets which contains the element 1 (or actually any

fixed element). Then |F1| =
(
n−1
k−1

)
. Erdős, Ko and Rado proved that this is indeed

the largest possible size of an intersecting family of k-element subsets of {1, 2, . . . , n}.
Actually, they also proved that if n > 2k then an intersecting family of size

(
n−1
k−1

)
must contain a fixed element. For n = 2k this is not true: any family will work

where you don’t choose a set and its complement at the same time. Now we will

only prove the weaker statement that
(
n−1
k−1

)
is an upper bound (and actually we will

cheat a bit as we cite a very non-trivial statement).

Let us define the following graph G: its vertex set consists of the k-element

subsets of {1, 2, . . . , n} and two sets are joined by an edge if they are disjoint. This
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graph is called the Kneser(n, k) graph. An independent set in this graph is exactly

an intersecting family. The following theorem about its spectrum is non-trivial, its

proof can be found in C. Godsil and G. Royle: Algebraic graph theory, page 200.

Theorem 1.2.8. The eigenvalues of the Kneser(n, k) graph are

(−1)i
(
n− k − i
k − i

)
,

where i = 0, . . . , k. The multiplicity of
(
n−k
k

)
is 1, otherwise the multiplicity of

(−1)i
(
n−k−i
k−i

)
is
(
n
i

)
−
(
n
i−1

)
if i ≥ 1.

Note that the Kneser-graph is
(
n−k
k

)
–regular, and according to the previous the-

orem, its smallest eigenvalue is −
(
n−k−1
k−1

)
. Then by the Hoffman-Delsarte bound we

have

α(Kneser(n, k)) ≤
(
n−k−1
k−1

)(
n
k

)(
n−k
k

)
+
(
n−k−1
k−1

) .
Note that (

n− k
k

)
=
n− k
k

(
n− k − 1

k − 1

)
,

and so the denominator is(
n− k
k

+ 1

)(
n− k − 1

k − 1

)
=
n

k

(
n− k − 1

k − 1

)
.

Hence (
n−k−1
k−1

)(
n
k

)(
n−k
k

)
+
(
n−k−1
k−1

) =
k

n

(
n

k

)
=

(
n− 1

k − 1

)
.

Voilá! Honestly this is probably the most complicated proof of the Erdős-Ko-Rado

theorem, but there are some similar theorems where the only known proof goes

through the eigenvalues of some similarly defined graph.

Now let us turn back to estimating e(S, T ) for d–regular graphs. The following

theorem is called the expander mixing lemma.

Theorem 1.2.9 (Expander mixing lemma). Let G be a d–regular graph on n ver-

tices with eigenvalues d = λ1 ≥ λ2 ≥ · · · ≥ λn. Let λ = max(|λ2|, . . . , |λn|) =

max(|λ2|, |λn|). Let S, T ⊆ V (G), then∣∣∣∣e(S, T )− d |S||T |
n

∣∣∣∣ ≤ λ
√
|S||T |.

12



Proof. Let χS and χT be the characteristic vectors of the sets S and T : so χS(u) = 1

if u ∈ S and 0 otherwise. Observe that

e(S, T ) = χTSAχT .

Let us write up χS and χT in the orthonormal basis u1, . . . , un of eigenvectors. Note

that we can choose u1 to be 1√
n
1. Let

χS =
n∑
i=1

αiui

and

χT =
n∑
i=1

βiui.

Then

χTSAχT =
n∑
i=1

λiαiβi.

Note that α1 = (χS, u1) = |S|√
n
, and similarly β1 = (χT , u1) = |T |√

n
. Hence

λ1α1β1 = d
|S|√
n

|T |√
n

= d
|S||T |
n

.

Hence

e(S, T )− d |S||T |
n

=
n∑
i=2

λiαiβi.

Then ∣∣∣∣e(S, T )− d |S||T |
n

∣∣∣∣ =

∣∣∣∣∣
n∑
i=2

λiαiβi

∣∣∣∣∣ ≤ λ
n∑
i=2

|αi||βi|.

Now let us apply a Cauchy-Schwartz inequality:

n∑
i=2

|αi||βi| ≤

(
n∑
i=2

|αi|2
)1/2( n∑

i=2

|βi|2
)1/2

.

We will be a bit generous:(
n∑
i=2

|αi|2
)1/2( n∑

i=2

|βi|2
)1/2

≤

(
n∑
i=1

|αi|2
)1/2( n∑

i=1

|βi|2
)1/2

=

= ||χS|| · ||χT || = |S|1/2|T |1/2.

Hence ∣∣∣∣e(S, T )− d |S||T |
n

∣∣∣∣ ≤ λ
√
|S||T |.

13



If we were not generous at the last step then we could have proved the following

stronger statement:∣∣∣∣e(S, T )− d |S||T |
n

∣∣∣∣ ≤ λ

(
|S| − |S|

2

n

)1/2(
|T | − |T |

2

n

)1/2

.

We could have used that α1 = |S|√
n

and β1 = |T |√
n
.

Remark 1.2.10. A graph is called (n, d, λ)-pseudorandom if it is a d–regular graph

on n vertices with max(|λ2|, |λn|) ≤ λ. (Note that for bipartite d–regular graphs

it is convenient to require that λ2 ≤ λ, we will not do it though.) Many theorems

which assert that ”a random d–regular graph satisfies property P with very high

probability” have an analogue that ”an (n, d, λ)-pseudorandom graph with λ ≤ ...

satisfies property P”. Such an example is the following theorem due to F. Chung.

Theorem 1.2.11. Let G be an (n, d, λ)–pseudorandom graph. Then the diameter of

G is at most ⌈
log(n− 1)

log
(
d
λ

) ⌉
+ 1.

Proof. We need to prove that there exists an r ≤ d log(n−1)

log( dλ)
e+1 such that the distance

between any vertices i and j is at most r. In other words, there is a walk of length at

most r starting at vertex i and ending at vertex j. It means that we have to prove

that (Ar)ij > 0. On the other hand, we know that

(Ar)ij =
n∑
k=1

uikujkλ
r
k,

where uk = (u1k, . . . , unk). As usual, u1, . . . , un is an orthonormal basis of eigenvec-

tors: Aui = λiui, and u1 = 1√
n
1. Then

ui1uj1λ
r
1 =

dr

n
.

So it is enough to prove that ∣∣∣∣∣
n∑
k=2

uikujkλ
r
k

∣∣∣∣∣ < dr

n

for some r ≤ d log(n−1)

log( dλ)
e+ 1.∣∣∣∣∣

n∑
k=2

uikujkλ
r
k

∣∣∣∣∣ ≤ λr
n∑
k=2

|uik||ujk| ≤ λr

(
n∑
k=2

|uik|2
)1/2( n∑

k=2

|ujk|2
)1/2

=

14



= λr

(
n∑
k=1

|uik|2 − u2
i1

)1/2( n∑
k=2

|ujk|2 − u2
i1

)1/2

=

= λr
(

1− 1

n

)1/2(
1− 1

n

)1/2

= λr
(

1− 1

n

)
.

The second inequality is a Cauchy-Schwartz. After that we used that the row(!)

vectors of U = (u1, . . . un) have length 1. This is true since the orthonormality of the

column vectors implies the orthonormality of the row vectors. (Indeed, U · UT = I

implies UT · U = I.) Note that

λr
(

1− 1

n

)
<
dr

n

indeed holds true for r = d log(n−1)

log( dλ)
e+ 1.

It is clear from the previous theorems that the smaller the λ, the better pseudo-

random properties G have. Then the following question naturally arises: what’s the

best λ we can achieve? The complete graph Kd+1 has eigenvalues d, (−1)(d), but the

problem is that it is only one graph. What happens if we require our graph to be

large? The Alon-Boppana theorem asserts that in some sense 2
√
d− 1 is a threshold:

Theorem 1.2.12 (Alon-Boppana). Let (Gn) be a sequence of d-regular graphs such

that |V (Gn)| → ∞. Then

lim inf
n→∞

λ2(Gn) ≥ 2
√
d− 1.

In other words, if s < 2
√
d− 1 then there are only finitely many d–regular graphs

for which λ2 ≤ s.

We will prove a slightly stronger statement due to Serre.

Theorem 1.2.13 (Serre). For every ε > 0, there exists a c = c(ε, d) such that for

any d–regular graph G, the number of eigenvalues λ with λ ≥ (2 − ε)
√
d− 1 is at

least c|V (G)|.

Serre’s theorem indeed implies the Alon-Boppana theorem since for any

s < 2
√
d− 1 we choose ε such that s < (2− ε)

√
d− 1, then if |V (G)| > 2/c(ε, d), we

have at least two eigenvalues which are bigger then s (one of them is d), so λ2(G) > s.

The following proof of Serre’s theorem is due to S. Cioaba.
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Proof. The idea of the proof is that p2k =
∑n

i=1 λ
2k
i cannot be too small. Recall that

p2k counts the number of closed walks of length 2k. We will show that for any vertex

v, the number of closed walks W2k(v) of length 2k starting and ending at v is at least

as large as the number of closed walks starting and ending at some root vertex of

the infinite d–regular tree Td.
Let us consider the following infinite d-regular tree, its vertices are labeled by the

walks starting at the vertex v which never steps immediately back to a vertex from

where it came. Such walks are called non-backtracking walks. For instance, 149831

is such a walk, but 1494 is not a backtracking walk since after 9 we immediately

stepped back to 4. We connect two non-backtracking walks in the tree if one of them

is a one-step extension of the other.

1

1

2 3

6 7

85

4

910

12 13 14

125 126 149

1256 1498

Note that every closed walk in the tree corresponds to a closed walk in the graph:

for instance, 1, 14, 149, 14, 1 corresponds to 1, 4, 9, 4, 1. (In some sense, these are the

”genuinely” closed walks.) On the other hand, there are closed walks in the graph

G, like 149831, which are not closed anymore in the tree. Let r2k denote the number

of closed closed walks from a given a root vertex in the infinite d–regular tree. So

far we know that

p2k =
∑

v∈V (G)

W2k(v) ≥ nr2k.

We would be able to determine r2k explicitly, but for our purposes, it is better to

give a lower bound with which we can count easily. Such a lower bound is

r2k ≥
(

2k
k

)
k + 1

d(d− 1)k−1 >
1

(k + 1)2
(2
√
d− 1)2k.

The second inequality comes from Stirling’s formula, so we only need to understand

the first inequality. Every closed walk in the tree can be encoded as follows: we write
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a 1 if we step down (so away from the root) and −1 if we step up (towards the root),

additionally we choose a direction d− 1 or d ways if we step down. More precisely,

we can choose our step in d ways if we are in the root and d − 1 ways otherwise.

(The lower bound d− 1 would be sufficient for us.) Note that we have to step down

exactly k times, and step up exactly k times to get a closed walk. So the sequence

of ”directions” is at least d(d − 1)k−1. The sequence of ±1 has two conditions: (i)

there must be exactly k 1’s and exactly k −1’s, (ii) the sum of the first few elements

cannot be negative (we cannot go higher than the root): s1 + s2 + · · · + si ≥ 0 for

all 1 ≤ i ≤ 2k, where si = ±1 according to the i-th step goes down or up. Such

sequences are counted by the Catalan-numbers:
(2k
k )

k+1
.

Now let us finish the proof by using the fact that

p2k ≥
n

(k + 1)2
(2
√
d− 1)2k

for every k. Let m be the number of eigenvalues which are at least (2 − ε)
√
d− 1.

Let us consider the sum
n∑
i=1

(d+ λi)
2t,

where t is a positive integer that we will choose later. Note that 0 ≤ d + λi ≤ 2d,

hence
n∑
i=1

(d+ λi)
2t ≤ m(2d)2t + (n−m)(d+ (2− ε)

√
d− 1)2t.

On the other hand, by the binomial theorem we have

n∑
i=1

(d+ λi)
2t =

n∑
i=1

2t∑
j=0

(
2t

j

)
djλ2t−j

i =
2t∑
j=0

(
2t

j

)
dj

(
n∑
i=1

λ2t−j
i

)
.

We know that pk =
∑n

i=1 λ
k
i ≥ 0 if k is odd and p2k ≥ n

(k+1)2
(2
√
d− 1)2k. Hence

2t∑
j=0

(
2t

j

)
dj

(
n∑
i=1

λ2t−j
i

)
≥

t∑
j=0

(
2t

2j

)
dj

(
n∑
i=1

λ2t−2j
i

)
≥

≥
t∑

j=0

(
2t

2j

)
dj

n

(t− j + 1)2
(2
√
d− 1)2t−2j ≥ n

(t+ 1)2

t∑
j=0

(
2t

2j

)
dj(2
√
d− 1)2t−2j =

=
n

2(t+ 1)2

(
(d+ 2

√
d− 1)2t + (d− 2

√
d− 1)2t

)
≥ n

2(t+ 1)2
(d+ 2

√
d− 1)2t.
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Hence we have

m(2d)2t + (n−m)(d+ (2− ε)
√
d− 1)2t ≥ n

2(t+ 1)2
(d+ 2

√
d− 1)2t.

This means that

m

n
≥

1
2(t+1)2

(d+ 2
√
d− 1)2t − (d+ (2− ε)

√
d− 1)2t

(2d)2t − (d+ (2− ε)
√
d− 1)2t

.

Note that (
d+ 2

√
d− 1

d+ (2− ε)
√
d− 1

)2t

grows much faster than 2(t+ 1)2, so we can choose a t0 for which

1

2(t0 + 1)2
(d+ 2

√
d− 1)2t0 − (d+ (2− ε)

√
d− 1)2t0 > 0,

then

c(ε, d) =

1
2(t0+1)2

(d+ 2
√
d− 1)2t0 − (d+ (2− ε)

√
d− 1)2t0

(2d)2t0 − (d+ (2− ε)
√
d− 1)2t0

satisfies the conditions of the theorem.

Remark 1.2.14. A d–regular non-bipartite graphG is called Ramanujan if λ2, |λn| ≤
2
√
d− 1. If G is bipartite then it is called Ramanujan if λ2 ≤ 2

√
d− 1. It is known

that for any d there exists infinitely many d–regular bipartite Ramanujan-graph, this

is a result of A. Marcus, D. Spielman and N. Srivastava. On the other hand, if G is

non-bipartite then our knowledge is much more limited: for d = pα + 1, where p is a

prime there exists construction for infinite family of d–regular Ramanujan-graphs. It

is conjectured that a random d–regular graph is Ramanujan with positive probability

independently of the number of vertices.

1.3 Derandomization

Suppose we have a boolean function f : {0, 1}n → {0, 1} and a probabilistic algo-

rithm A that approximates f using a random r ∈ {0, 1}m in the following sense:

P(A(x, r) 6= f(x)) ≤ 1

4
.

We can significantly reduce the error rate by applying the algorithm 2t + 1 times

and then taking the majority vote. But this requires (2t + 1)m random bits, and
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unfortunately, random bits have costs. With the help of expanders we can achieve

that we only need to generate m random bits, but still reducing the error rate as

follows. Take a pseudo-random graph with parameters (2m, d, λ). Pick a random

vertex v ∈ V and output

B(x, v) := Majorityu∈NG(v)A(x, u).

Proposition 1.3.1. For every x ∈ {0, 1}n we have

P(B(x, v) 6= f(x)) ≤ 4

(
λ

d

)2

.

Proof. Fix an input x ∈ {0, 1}n. Let

S = {v ∈ V (G) | B(x, v) 6= f(x)},

and

T = {v ∈ V (G) | A(x, v) 6= f(x)}.

Then |T | ≤ 1
4
2m by the assumption on the algorithm A. Note that every v ∈ S has

at least d/2 neighbors in T . Hence e(S, T ) ≥ d
2
|S|. Expander mixing lemma claims

that ∣∣∣∣e(S, T )− d |S||T |
2m

∣∣∣∣ ≤ λ
√
|S||T |.

Putting these together we get that

λ
√
|S||T | ≥ e(S, T )− d |S||T |

2m
≥ d

2
|S| − d |S||T |

2m
≥ d

2
|S| − d

4
|S| = d

4
|S|.

Hence
16λ2

d2
|T | ≥ |S|.

Thus

P(B(x, v) 6= f(x)) =
|S|
2m
≤ 16λ2

d2

|T |
2m
≤ 4

(
λ

d

)2

.

Remark 1.3.2. From the proof we can actually see that

P(B(x, v) 6= f(x)) ≤ 16

(
λ

d

)2

P(A(x, v) 6= f(x))

as long as P(A(x, v) 6= f(x)) ≤ 1/4. It is not always a good idea to reduce the

error rate this way since we have to do the deterministic computation of A(x, r) d

times. So there is a trade-off between error rate, running time of A and the cost of

generating a random bit.
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1.4 Google Page Rank

We have seen that if A is a non-negative (symmetric) matrix, then it has an eigen-

vector with only non-negative entries. These entries can be used to rank the vertices.

Google uses a similar idea to rank websites, but they have a directed graph.

So suppose that u1, . . . , um are web pages that link to a page v. Let page ui have

out-degree di. Then the Page Rank w(·) satisfies the equation

w(v) = 1− α + α

m∑
i=1

w(ui)

di
,

where α is a preset constant. Google used α = 0.85.

To translate this to the language of linear algebra let A be the adjacency matrix

of the directed graph G, that is, Auv = 1 if there is a directed edge (u, v) ∈ E(G). Let

D be the diagonal matrix containing the out-degrees, and J be the all-one matrix.

Set M = 1−α
n
J+αD−1A. (If du = 0 for some u, then we artificially set the value du to

be 1.) Then M has only positive entries, so it has a unique positive left eigenvector

w normalized such a way that
∑

u∈V (G) w(u) = 1. We have M1 = 1 and wM = w.

The matrix M is huge, but A is sparse, so the sequence wk+1 = wkM will converge

to w and the computational cost is not terrible. The value of α regulates the speed

of convergence.

1.5 SageMath and spectral graph theory

It is always very instructive to see a lot of examples. SageMath, an easy-to-use math

software, provides a simple way to compute eigenvalues and eigenvectors of graphs.

You don’t even need to download this program, you can use the online version

at https://sagecell.sagemath.org/. It is, of course, possible to download the

program.

Let’s see an example. Copy-paste the following code into the window and push

the Evaluate button under the window:

g=graphs.PetersenGraph()

g.show()

print g.adjacency_matrix()

print g.spectrum()

print g.eigenvectors()
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For the method g.eigenvectors() SageMath gives the eigenvalues again with a basis

of the corresponding eigenspace and its dimension. Instead of the Petersen graph, you

can try many implemented graphs, see a list at http://doc.sagemath.org/html/

en/reference/graphs/sage/graphs/graph_generators.html or you can even build

up one:

g=Graph({})

g.add_edges([(0,1),(1,2),(2,3),(3,4),(2,4)])

g.show()

g.spectrum()

Of course, SageMath provides many other tools to work with graphs. For a list,

see http://doc.sagemath.org/html/en/reference/graphs/sage/graphs/generic_

graph.html
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2. Probabilistic Method

2.1 Introduction

In mathematics we often faces with the problem that we need to prove that a certain

structure S exists with a required property P . In most cases we simply prove the

existence by constructing the required structure S. Unfortunately, sometimes this

route does not work and we can only give an existence proof, a proof that does

not give much besides the existence. A popular tool providing such proofs is for

instance the pigeonhole principle. Another tool that we describe in this chapter is

the so-called probabilistic method. Using this method we show that in a certain

probability space the required structure S exists with positive probability.

In this chapter we consider the most basic methods of this general idea. The

first method will simply rely on the union bound. A tiny bit more tricky method is

the so-called first moment method. Then we develop further this method: altered

first moment method. Finally we will study the so-called second moment method to

investigate threshold functions of random graphs.

These methods seem to be very simple, but in reality there are two (non-independent)

problems that can occur. First, we have to realize that we need to use the probabilis-

tic method, and forget the idea of constructing the required structure. Second, the

construction of the probability space can be very tricky. Below we will see various

examples. Some of them will be very simple, others will be quite tricky.

Finally, I would like to call attention to the book The Probabilistic Method by

Noga Alon and Joel Spencer [2]. This is a very nicely written book containing all the

results of this chapter and many many more beautiful applications of the probabilistic

method.
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2.2 Basics

In this section we collected some notations and basic inequalities.

The expected value of a random variable X is
∫

Ω
XdP . If X takes only non-

negative integers then

EX =
∞∑
k=0

kP(X = k).

The variance of a random variable is

Var(X) = E(X − EX)2 = EX2 − (EX)2.

The covariance of the random variables X and Y will be denoted by

Cov(X, Y ) = E(XY )− EX · EY.

If X = X1 +X2 + · · ·+Xn then

Var(X) =
n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj).

2.2.1 Useful inequalities

Proposition 2.2.1. For all x ∈ R we have 1 + x ≤ ex.

Proof. If x > 0 then

1 + x ≤
∞∑
k=0

xk

k!
= ex.

If x ≤ −1 then the claim is trivial. If −1 ≤ x ≤ 0, then set y = −x ≥ 0. Then

1

1− y
=
∞∑
k=0

yk ≥
∞∑
k=0

yk

k!
= ey.

Hence ex = e−y ≥ 1− y = 1 + x.

Proposition 2.2.2. We have (
n

k

)
≤
(en
k

)k
.

Proof. Since
(
n
k

)
≤ nk

k!
, it is enough to prove that k! ≥

(
k
e

)k
. This is indeed true:

ek ≥
k−1∏
j=1

(
1 +

1

j

)j
=

k−1∏
j=1

(j + 1)j

jj
=

kk−1

(k − 1)!
=
kk

k!
.
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2.2.2 Basic inequalities in probability theory

We recall some basic inequalities.

Proposition 2.2.3 (Union bound).

P

(
m⋃
i=1

Ai

)
≤

m∑
i=1

P(Ai).

Theorem 2.2.4 (Markov’s inequality). Let X be a non-negative random variable

with EX > 0. Then for arbitrary positive λ we have

P(X ≥ λ) ≤ EX
λ
.

Proof.

EX =

∫
XdP ≥

∫
{X≥λ}

XdP ≥
∫
{X≥λ}

λdP = λP(X ≥ λ).

A simple corollary of Markov’s inequality is Chebyshev’s inequality.

Theorem 2.2.5 (Chebyshev’s inequality). Let X be a random variable with EX = µ

and Var(X) = σ2. Then

P(|X − µ| ≥ λσ) ≤ 1

λ2
.

Proof. Let us apply Markov’s inequlity to the random variable Y = (X − µ)2. Then

EY = Var(X) = σ2 by definition.

P(|X − µ| ≥ λσ) = P(Y ≥ λ2σ2) ≤ EY
λ2σ2

=
1

λ2
.

? ? ?

In this lecture note we would like to prove combinatorial theorems and so many

times the studied random variable X takes only non-negative integer values. In

fact, often one can translate the combinatorial statement to a statement about the

probability that a random variable takes the value 0. This motivates us to collect

some results on estimates of P(X = 0).
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Theorem 2.2.6. If X takes only non-negative integer values then

P(X = 0) ≥ 1− EX.

Proof. We have

P(X > 0) =
∞∑
k=1

P(X = k) ≤
∞∑
k=0

kP(X = k) = EX,

or equivalently,

P(X = 0) ≥ 1− EX.

This implies that, for instance, if a sequence of random variables Xn satisfies that

limn→∞ EXn = 0, then

lim
n→∞

P(Xn = 0) = 1.

However, EXn →∞ does not guarantee that

lim
n→∞

P(Xn = 0) = 0.

To phrase such a statement we also need the variance of the random variables Xn.

Theorem 2.2.7.

P(X = 0) ≤ Var(X)

(EX)2
.

Proof. Let us use Chebyshev-inequality.

P(X = 0) ≤ P(|X − EX| ≥ EX) ≤ Var(X)

(EX)2
.

Remark 2.2.8. For non-negative random variables the above inequality can be

improved as follows:

P(X = 0) ≤ Var(X)

E(X2)
.

Since E(X2) ≥ (EX)2 this is indeed an improvement. The proof of this inequality

is a simple application of the Cauchy–Schwarz inequality: set A = {ω | X(ω) > 0},
then (∫

A

XdP

)2

≤
(∫

A

1dP

)(∫
A

X2dP

)
,
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that is

(EX)2 ≤ (1− P(X = 0))(E(X2)).

After some algebraic manipulation we get that

P(X = 0) ≤ Var(X)

E(X2)
.

Theorem 2.2.7 implies that if limn→∞
Var(Xn)
(EXn)2

= 0 then

lim
n→∞

P(Xn = 0) = 0.

We can also see that if Var(Xn) = o((EXn)2) then Xn is concentrated around EXn

which we can simply denote by Xn ∼ EXn.

2.3 Existence results

In this section we give the most basic examples of the probabilistic method where

one only needs to use the union bound, Proposition 2.2.3.

2.3.1 Diagonal Ramsey numbers

Recall that the Ramsey-number R(r, b) denotes the smallest n such that no matter

how we color the edges of the complete graph Kn with red and blue colors it will

either contain an induced red Kr or a blue Kb. Note that the definition implies that

for n = R(r, b)− 1 there is a coloring of Kn without red Kr and blue Kb.

Theorem 2.3.1 (Erdős). Suppose that the positive integers n, k satisfy the inequality(
n
k

)
21−(k2) < 1. Then R(k, k) > n. In particular, R(k, k) > b2k/2c if k ≥ 3.

Proof. We need to show that there exists a coloring of the edge set of Kn that does

not contain either monochromatic red or blue clique Kk. Let us color each edges

with color red or blue with probability 1/2 independently of each other. Now let us

estimate the probability that the coloring is bad, i. e., it contains a monochromatic

red or blue Kk. For each S ⊂ V (G) with |S| = k let AS be the event the induced

subgraph on S is monochromatic. Then

P(coloring is bad) ≤
∑
|S|=k

P(AS) =

(
n

k

)
2

2(k2)
.
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By the condition of the theorem
(
n
k

)
21−(k2) < 1, so the probability that the coloring

is good is positive.

Next we show that for k ≥ 3 and n = b2k/2c the condition of the theorem is

satisfied. Indeed,(
n

k

)
21−(k2) <

nk

k!
21−(k2) ≤ 2k

2/2

k!
21−(k2) =

2(k+2)/2

k!
< 1.

if k ≥ 3.

2.3.2 Tournaments

Definition 2.3.2. A tournament is a complete directed graph. A tournament D is

called k-dominated if for every k vertices v1, . . . , vk there exists a vertex u such that

(u, vi) ∈ E(D) for i = 1, . . . , k.

Theorem 2.3.3 (Erdős [6]). If n is large enough then there exists a k-dominated

tournament on n vertices.

Proof. Let us direct each edge with probability 1/2 − 1/2 independently of each

other. Then the chance that for a given set of vertices v1, . . . , vk there is no u such

that all (u, vi) ∈ E(D) is (1 − 1/2k)n−k. Hence the probability that the orientation

is bad is at most (
n

k

)(
1− 1

2k

)n−k
.

A little computation shows that if n
lnn

> k2k then this is less than 1. For large k this

is satisfied if n > k22k. Hence with positive probability there exists a k-dominated

tournament.

Remark 2.3.4. The computation can be carried out using the bound 1 + x < ex:(
n

k

)(
1− 1

2k

)n−k
≤ nk

k!
exp

(
− 1

2k
(n− k)

)
≤ 1

k!
exp

(
k

2k

)
· exp

(
k lnn− n

2k

)
≤ e

k!
exp

(
k lnn− n

2k

)
≤ e

k!
< 1

if n
lnn

> k2k.
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2.4 First moment method

In the previous section we have seen some very simple ideas how to find a certain

structure S by proving that it exists with positive probability just by using union

bound. Here we study another very simple technique. This is the so-called first

moment method. In many cases the structure S that we need to find is defined

through some parameter f(S). For instance, we need to prove that there exists

a structure S for which some parameter f(S) satisfies f(S) ≥ ρ. If we find a

probability space in which the expected value of f(S) is bigger or equal to ρ then we

can immediately conclude that f(S) ≥ ρ with positive probability.

2.4.1 Warm-up: large bipartite subgraphs

Theorem 2.4.1 ([2]). Let G be a graph with n vertices and e(G) edges. Then G has

a bipartite subgraph with at least e(G)/2 edges.

Proof. One can rephrase the statement of the theorem as follows: there exists a cut

(A, V \ A) of G such that the number of edges (e(A, V \ A)) contained in the cut is

at least e(G)/2.

Let us consider the random set A which contains every v ∈ V (G) with probability

1/2 independently of each other. (This way we have defined a probability space.) Let

us consider the random variable X = e(A, V \A). We have to show that with positive

probability X ≥ e(G)/2. To this end it is enough to show that EX = e(G)/2. This is

indeed true. For every edge f ∈ E(G) let us introduce the indicator random variable

Xf which takes value 1 if f is in the cut (A, V \ A), and 0 otherwise. Then

EX = E

 ∑
f∈E(G)

Xf

 =
∑

f∈E(G)

EXf .

(Note that the random variables Xf are not necessarily independent, but the linearity

of expectation holds true even with non-independent random variables.) For all

f ∈ E(G) we have EXf = 1/2 since the end points of f are in the same set with

probability 1/2 and they are in different sets with probability 1/2. Hence

EX =
∑

f∈E(G)

EXf =
∑

f∈E(G)

1

2
=

1

2
e(G).

We are done!
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2.4.2 Independent sets

Theorem 2.4.2 (Caro; Wei). Let G be a graph with vertex degrees d1, . . . , dn. Let

α(G) be the size of the largest independent set of the graph G. Then

α(G) ≥
n∑
i=1

1

di + 1
.

Proof. Consider a random permutation of the vertices. Let us encircle all the vertices

that precede all their neighbors in the given order. Let X(π) be the random variable

that counts the number of encircled vertices. For a given vertex v ∈ V (G) let

Xv be the indicator variable that the the vertex v is encircled or not. Then X =∑
v∈V (G) Xv, consequently

EX =
∑

v∈V (G)

EXv.

Note that for a vertex v we have EXv = 1
dv+1

since the probability that v precedes its

neighbors is the same as saying that v is the first among dv + 1 vertices in a random

permutation, and this probability is clearly 1
dv+1

. Hence

EX =
∑

v∈V (G)

EXv =
n∑
i=1

1

di + 1
.

With positive probability X is at least as large as this expected value. On the other

hand, in an arbitrary order the encircled vertices form an independent set since if

two of them were adjacent then the second of the two vertices in the order would

not be encircled. Hence

α(G) ≥ EX =
n∑
i=1

1

di + 1

as required.

Remark 2.4.3. From the above proof one can easily deduce Turán’s theorem.

2.4.3 Crossing number

Theorem 2.4.4 (Ajtai-Chvátal-Newborn-Szemerédi [1]; Leighton). Let G be a graph

with n vertices and e edges. Let X(G) be the crossing number of the graph G. If

e ≥ 4n then

X(G) ≥ e3

64n2
.
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Proof. Recall that any planar graph with n vertices has at most 3n− 6 edges. Con-

sequently, if G is a graph with n vertices and e edges then the crossing number is at

least e− (3n− 6) (why?). So

X(G) ≥ e(G)− 3v(G).

(The +6 won’t be important for us.) This is of course a weaker statement than what

we want to prove. The key idea of the better bound is to apply this weak inequality

to a random subgraph of G. Set 0 ≤ p ≤ 1 and consider the random subgraph of G

where we keep each vertex with probability p and delete it with probability 1 − p.
Let Gp be the obtained graph. Then

Ev(Gp) = pv(G) and Ee(Gp) = p2e(G),

since the probability that we keep an edge is p2, the probability that we keep both

end points of the edge. We need to be a bit more careful with EX(Gp). Starting

from an optimal drawing of G, the probability that a crossing remains is p4 since

all four vertices determining the crossing should remain. This means that starting

from an optimal drawing of G the expected value of the crossing number of Gp is

p4X(G). However, it may happen that Gp has a better drawing with smaller number

of crossings. So all we can say is that

EX(Gp) ≤ p4X(G).

Hence

p4X(G)− p2e(G) + 3pv(G) ≥ EX(Gp)− Ee(Gp) + 3Ev(Gp) =

= E(X(Gp)− e(Gp) + 3v(Gp)) ≥ 0.

Whence p4X(G)− p2e(G) + 3pv(G) ≥ 0 for all 0 ≤ p ≤ 1. Now let us choose p to be
4v(G)
e(G)

. This is at most 1 according to the assumption of the theorem. Then

X(G) ≥ p−2e(G)− 3p−3v(G) =
e(G)3

64v(G)2
.

This is exactly what we wanted to prove.

Since it is not clear how we can use such a statement let us consider a corollary

of this theorem. Then later we even consider a corollary of this corollary.

30



Given some points and lines on the plane. Let P be the set of points, and L be

the set of lines. The number of point-line incidences is exactly what we expect:

I(P ,L) = |{(P,L) ∈ P × L | P ∈ L}|.

Let I(n,m) be the maximal number of incidences given n points and m lines:

I(n,m) = max
|P|=n,|L|=m

I(P ,L).

The following theorem gives a good bound on I(n,m).

Theorem 2.4.5 (Szemerédi-Trotter [11]).

I(n,m) ≤ 4(m2/3n2/3 +m+ n).

Proof. Let us consider the graph G whose vertices are the elements of the set P , i.

e., the points, and two points are adjacent if there is a line ` ∈ L that contains the

two points next to each other.

First let us determine the number of edges of the graph G. If a line contains k

points then it determines k − 1 edges. Hence the number of edges is I(P ,L) −m.

Next let us give an upper bound on X(G). Two edges intersect each other if two

lines intersect each other. Hence X(G) is at most
(
m
2

)
. If e(G) < 4n then

I(P ,L) < 4n+m < 4(m2/3n2/3 +m+ n).

If e(G) ≥ 4n then we can use the previous theorem:(
m

2

)
≥ X(G) ≥ e(G)3

64n2
=

(I(P ,L)−m)3

64n2
.

Thus

I(P ,L) ≤ (32m2n2)1/3 +m < 4(m2/3n2/3 +m+ n).

Hence

I(n,m) ≤ 4(m2/3n2/3 +m+ n).

Remark 2.4.6. We used very little information about the lines. We simply used

that two lines have at most one intersection. We could have considered circles or

arbitrary curves of degree at most d, these curves have also bounded number of

intersections. Naturally, the constants in the theorem would have been worse, but

still we would have received a bound of type Od(n
2/3m2/3 + n + m) for the number

of incidences.
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In what follows we consider a nice application of the Szemerédi-Trotter theorem.

Let A ⊂ R be a finite set, and let

A+ A = {a+ a′ | a, a′ ∈ A}

and

A · A = {a · a′ | a, a′ ∈ A}.

If A = {1, 2, . . . , n} then A+A = {2, . . . , 2n}, and so |A+A| = 2n−1. However, in

this case we have |A·A| = Ω
(

n2

(logn)α

)
. If A = {1, 2, 22, . . . , 2n−1} then |A·A| = 2n−1,

but then we have |A + A| =
(
n
2

)
. After checking several examples one will have the

feeling that one of the sets should be large. This is a well-known conjecture:

Conjecture 2.4.7 (Erdős-Szemerédi). For all ε > 0 there exists a constant c(ε) such

that for all finite set A ⊂ R we have

|A+ A|+ |A · A| ≥ c(ε)|A|2−ε.

We are very far from proving this conjecture. The following result of György

Elekes was a real breakthrough in 1997, and it opened the way of geometric arguments

in additive combinatorics.

Theorem 2.4.8 (Elekes [4]). Let A ⊂ R be a finite set. Then

|A+ A| · |A · A| ≥ c|A|5/2.

In particular,

|A+ A|+ |A · A| ≥ c′|A|5/4.

Proof. Let P = {(a, b) |a ∈ A + A, b ∈ A · A}. This is a point set on the plane of

size |A+ A||A · A|.
Let us consider the lines of following type:

`a,b = {(x, y) | y = a(x− b)},

where a, b ∈ A. Let L be the set of these lines. Then |L| = |A|2. Every such line

contains |A| points form P : (b + c, ac) ∈ `a,b if c ∈ A. Whence I(P,L) ≥ |A|3.

According to Szemerédi-Trotter theorem we have

|A|3 ≤ 4((|A+ A| · |A · A|)2/3(|A|2)2/3 + |A+ A| · |A · A|+ |A|2).

From this the statement of the theorem follows after a little computation.
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Remark 2.4.9. Currently, the best-known result is due to József Solymosi [9]:

|A+ A|+ |A · A| ≥ c(ε)|A|4/3−ε.

More precisely, Solymosi showed that

|A · A| · |A+ A|2 ≥ |A|4

4dln |A|e
,

consequently,

max(|A · A|, |A+ A|) ≥ |A|4/3

2dln |A|e1/3
.

2.5 Alteration

In this section we study a method called the altered first moment method. It is a

slightly bit more tricky than the first moment method. Here the randomly chosen

structure S will not be immediately good, but will be bad just a little bit so that we

can fix the bad part of the structure. In practice, there will be a parameter f(.) that

measures the badness of the structure (or if there is a given parameter f(.) already,

then we prepare a new parameter f ′(.) measuring f(.) and the badness at the same

time). If the expected value of this badness parameter is small, then with positive

probability we can find a random structure that we can fix later. After the examples

it will be clear how this method works.

2.5.1 Independent sets in graphs and hypergraphs

Theorem 2.5.1. Let H be an r-uniform hypergraph with n vertices and e(H) edges.

Suppose that n ≤ 2e. Then there exists a set S ⊆ V (H) inducing no edge such that

|S| ≥ 1

2

(
n

2e(H)

)1/(r−1)

n.

Proof. Let T be a random subset of the vertex set chosen as follows: we choose each

element of V to be in T with probability p. We will choose p later. Then E|T | = pn

and for the number of edges induced by T we have E(e(T )) = pre(H). Then

E(|T | − e(T )) = pn− pre(H).

Let

p = p0 =

(
n

2e(H)

)1/(r−1)

.
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Then p0n− pr0e(H) = p0n/2. Therefore,

E(|T | − e(T )) =
1

2
p0n.

Hence there must be a set T for which |T | − e(T ) ≥ 1
2
p0n. Let S ⊆ T be a set

obtained from T by deleting one vertex of each edge of T . Then S induces no edge

and

|S| ≥ |T | − e(T ) ≥ 1

2
p0n =

1

2

(
n

2e(H)

)1/(r−1)

n.

Remark 2.5.2. In the case of graphs, that is r = 2, this theorem says that

α(G) ≥ n2

4e(G)
.

This is always weaker than the bound

α(G) ≥
n∑
i=1

1

di + 1

obtained earlier.

We could have chosen p in a bit better way by simply choosing it such a way that

it maximizes pn− pre(H). This would have yielded the bound

α(H) ≥ r − 1

r

(
n

re(H)

)1/(r−1)

n.

2.5.2 Ramsey-numbers revisited

Theorem 2.5.3 ([2]). For all n and k we have R(k, k) > n−
(
n
k

)
21−(k2).

Proof. Let us color the edges of a complete graph Kn with red and blue. Let X be

the number of monochromatic Kk. Then

EX =

(
n

k

)
21−(k2).

So there must be a coloring with at most as many monochromatic Kk. Now let

us delete one vertex from each monochromatic Kk. Then the number of vertices is

at least n −
(
n
k

)
21−(k2) and the resulting graph has no monochromatic Kk. Hence

R(k, k) > n−
(
n
k

)
21−(k2).
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Remark 2.5.4. A careful analysis shows that this bound implies that

R(k, k) ≥ 1

e
(1 + o(1))k2k/2

while our previous argument only gave

R(k, k) ≥ 1√
2e

(1 + o(1))k2k/2.

Further improvement can be obtained by the so-called Lovász local lemma:

R(k, k) ≥
√

2

e
(1 + o(1))k2k/2.

2.5.3 Dominating sets in graphs

Theorem 2.5.5 ([2]). Let G = (V,E) be a graph with n vertices and minimum

degree δ > 1. Then it has a dominating set of size at most

n
1 + ln(δ + 1)

δ + 1
.

(A set U is called a dominating set of G if all v ∈ V \U has some neighbor u in U .)

Proof. The strategy is the following: we choose a random subset S and let T = T (S)

be the set of vertices v such that neither v, nor any of the neighbors of v are in the

set S. Then S ∪ T is a dominating set. Let us choose S as follows: we choose each

vertex v into S with probability p. We will choose p later. Then for any vertex v ∈ V
we have

P(v ∈ T ) = (1− p)1+d(v) ≤ (1− p)1+δ ≤ e−p(δ+1)

since neither v, nor any of the neighbors of v are in the set S. Hence

E(|S|+ |T |) = E|S|+ E|T | ≤ n(p+ e−p(δ+1)).

Let

p =
ln(δ + 1)

δ + 1
.

Then

E(|S|+ |T |) ≤ n(p+ e−p(δ+1)) =
n(1 + ln(δ + 1))

δ + 1
.

Hence with positive probability there must be a dominating set of at most this

size.
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2.5.4 Graphs with large chromatic number and girth

Theorem 2.5.6 (Erdős [5]). For arbitrary (k, `) there exists a graph G whose chro-

matic number is at least k and the length of its shortest cycle is at least `.

Proof. Let G(n, p) be the random graph with n vertices such that we draw all edges

with probability p = p(n) independently of each other. In this proof we will set

p = n−α, where α ≥ 0 is a parameter chosen later. First we estimate the number of

cycles shorter than ` . Given vertices v1v2 . . . vr form a cycle if vivi+1 (r+ 1 = 1) are

all edges, the probability of this event is pr. Naturally, we can choose the sequence

v1v2 . . . vr in n(n − 1) . . . (n − r + 1) ways, we only have to take take into account

that we counted the same cycle 2r ways (rotated and reflected copies). Let X be the

random variable counting the number of cycles of length at most `−1. Furthermore,

let X(v1 . . . vr) (r ≤ `−1) be the indicator random variable that the vertices v1 . . . vr

form a cycle in this order. Then

X =
∑

r,v1...vr

X(v1 . . . vr).

Hence

EX =
∑

r,v1...vr

EX(v1 . . . vr) =
`−1∑
r=3

n(n− 1) . . . (n− r + 1)

2r
pr ≤

`−1∑
r=3

(np)r

2r
.

Set M =
∑`−1

r=3
(np)r

2r
. Suppose that with some choice of p we can ensure that M is

small then with positive probability the number of cycles of length at most `−1 will

be at most M and by throwing out one point from each cycle we get a graph on at

least n −M vertices that does not contain a cycle of length at most ` − 1. In fact,

we need to be a little bit more careful as we need that the number of short cycles

is small with large probability. Fortunately, we get it immediately: with probability

at least 1/2 the number of cycles of length at most `− 1 is at most 2M . Otherwise

the expected value would be bigger than M .

Before we try to chose p appropriately let us see how we can bound the chromatic

number χ(G) of G. Here we use the simple fact that

χ(G) ≥ n

α(G)
.

This is true since all coloring class induces an independent set so its size is at most

α(G), so we need at least n
α(G)

colors to color G. So to make χ(G) large, it is enough
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to ensure that α(G) is small. Let us bound the probability that α(G) ≥ s. For a set

S of size s let AS be the event that S does not induce any edge. Then

P(α(G) ≥ s) ≤
∑
|S|=s

P(AS) =

(
n

s

)
(1− p)(

s
2) ≤ ns(1− p)(

s
2) ≤ (ne−p(s−1)/2)s.

(In the last step we used the fact that 1 + x ≤ ex is satisfied for all x. This is a

rather standard bound that is quite good if x is small.)

Now it is clear what we have to keep in mind: let M be small, so we need a small

p, but we also need that s is not too large and so we need that nep(s−1)/2 < 1. We

can easily achieve it as follows: set p = nθ−1 where θ = 1
2(`−1)

and s = d3
p

log ne.
Then

M =
`−1∑
r=3

(np)r

2r
≤ nθ(`−1)

`−1∑
r=3

1

2r
≤ n1/2 log n ≤ n

4

if n is large enough. On the other hand,

P(α(G) ≥ s) ≤ (ne−p(s−1)/2)s ≤ 1/4

if n is large enough. Since P(X ≥ 2M) ≤ 1/2 and P(α(G) ≥ s) ≤ 1/4, with positive

probability there exists a graph where the number of short cycles is at most n/2 and

α(G) ≤ s. Now from all cycles of length at most ` − 1 let us throw out 1 vertex

and let G∗ be the obtained graph. Then G∗ has at least n/2 vertices and it does not

contain a cycle of length at most ` − 1. Furthermore, α(G∗) ≤ α(G) since G∗ is an

induced subgraph of G. Then

χ(G∗) ≥ |V (G∗)|
α(G∗)

≥ n/2

3n1−θ log n
=

nθ

6 log n
.

If n is large enough this is bigger than k. We are done!

2.6 Second Moment method

In the previous sections we used the union bounds and the first moment method.

These techniques are very powerful due to the fact that they do not require any

information on the dependence of the random variables.

In this section we see some applications of the second moment method which

roughly means that we use Chebyshev’s inequality as a new ingredient in our proofs.

We will see that at least we need some partial information about the dependence
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of the random variables, but not too much. Generally quite crude bounds will be

enough to achieve our goals.

This section is based on the corresponding chapter of the book The Probabilistic

Method by Noga Alon and Joel Spencer.

In this section we study the threshold function of random graphs. This topic was

initiated in the seminal paper [7] of Erdős and Rényi: On the evolution of random

graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17-61. In fact, all

results of this section can be found in this paper. This paper is on the internet in a

scanned form.

2.6.1 General approach

From Section 2.2 we know that for a non-negative random variable X taking only

integers, then we have

1− EX ≤ P(X = 0) ≤ Var(X)

(EX)2
.

These two inequalities will play a major role in this section. We will often encounter

the situation that having some property is equivalent with some random variable

taking value 0. Hence if EX is small then P(X = 0) is large, and so the random

structure has the desired property with large probability. On the other hand, if
Var(X)
(EX)2

is small then the random structure doesn’t have the desired property with

large probability.

Often we will encounter with a sequence of structures, notably a sequence of

random graphs G(n, p). In this case X will be some Xn in a sequence. As we will see

it is also worth considering separately the case when Xn = X
(n)
1 +X

(n)
2 + · · ·+X

(n)
m

whereX
(n)
i are indicator random variables. LetX

(n)
i be the indicator random variable

of the event A
(n)
i . Let us introduce the notation i ∼ j if A

(n)
i and A

(n)
j are not

independent. Then it is also worth introducing the following sum:

∆n =
∑
i∼j

P(A
(n)
i ∩ A

(n)
j ).

(In this sum both (i, j) and (j, i) appear.) If P(A
(n)
i ) = p

(n)
i then

Var(X
(n)
i ) = E(X

(n)
i )2 − (EX(n)

i )2 = p
(n)
i − (p

(n)
i )2 ≤ p

(n)
i = EX(n)

i .

Furthermore,

Cov(X
(n)
i , X

(n)
j ) = E(X

(n)
i X

(n)
j )− EX(n)

i · EX
(n)
j ≤ E(X

(n)
i X

(n)
j ) = P(A

(n)
i ∩ A

(n)
j ).

38



Using these inequalities we get that

Var(Xn) =
n∑
i=1

Var(X
(n)
i ) + 2

∑
i<j

Cov(X
(n)
i , X

(n)
j )

=
n∑
i=1

Var(X
(n)
i ) +

∑
i∼j

Cov(X
(n)
i , X

(n)
j )

≤
n∑
i=1

EX(n)
i +

∑
i∼j

P(A
(n)
i ∩ A

(n)
j )

= EXn + ∆n.

Here we used the fact that if i 6∼ j, equivalently A
(n)
i and A

(n)
j are independent, then

Cov(X
(n)
i , X

(n)
j ) = 0. Hence

Var(Xn) ≤ EXn + ∆n.

Hence Theorem 2.2.7 implies the following statement.

Theorem 2.6.1. Suppose that EXn →∞ and ∆n = o((EXn)2).

Then P(Xn > 0)→ 1.

It is worth doing some extra work with ∆n. Many times the indicator random

variables X
(n)
1 , . . . , X

(n)
m have a symmetric role, in other words, for all i and j there

is an automorphism of the underlying space that takes A
(n)
i to A

(n)
j . Then

∆n =
∑
i∼j

P(A
(n)
i ∩ A

(n)
j ) =

∑
i

P(A
(n)
i )
∑
j∼i

P(A
(n)
j | A

(n)
i ).

The inner sum is independent of i, because of the symmetry:

∆∗n =
∑
j∼i

P(A
(n)
j | A

(n)
i ).

Hence

∆n =
∑
i

P(A
(n)
i )∆∗n = ∆∗n

∑
i

P(A
(n)
i ) = ∆∗nEXn.

So in this case we get the following theorem

Theorem 2.6.2. Suppose that EXn →∞ and ∆∗n = o(EXn). Then P(Xn > 0)→ 1.
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Remark 2.6.3. (Important!) It is rather inconvenient to write out the .(n) every

time: X
(n)
i , A

(n)
i , p

(n)
i ... So in what follows we hide the notation n and for instance

the last claim will read as follows: ”Suppose that EX →∞ and ∆∗ = o(EX). Then

P(X > 0) → 1.” This is of course completely stupid if we forget that there is a

hidden parameter n. Nevertheless, the parameter n will always be clear from the

context. For instance, if we study the random graph G(n, p(n)) and X is the number

of K4 in the graph then it is clear that actually X = Xn belongs to G(n, p(n)).

2.6.2 Threshold functions of graph appearance

Let G(n, p) be the random graph on n vertices whose edges appear with probability

p independently of each other. The probability p may depend on n, for instance, it

can be p = p(n) = n−1/2.

Surprisingly, one can see ”all” graphs G(n, p) at the same time as p runs from 0

to 1. For all edges let us pick a random number from the interval [0, 1], then just as

we rotate the frequency finder of a radio we start to increase p. At some point t the

edges with a number less than t will lit up. As we increase t more and more edges

will lit up. At point t = 0 the whole graph is dark (with probability 1, while at t = 1

the whole graph is lit up. At point p we can see G(n, p). This process is called the

evolution of random graphs.

What kind of questions can we study? We can, for instance, ask for the probabil-

ity that G(n, p) contains a Hamiltonian-cycle or we can seek for the probability that

the graph is a planar graph or the probability that its chromatic number is at most

100. For a fixed n these questions might be very difficult to answer and answers

might be very ugly. In general, we only wish to know the answer as the number

of vertices tends to infinity. In other words, we are seeking limP(G(n, p) ∈ P ) for

some property P like containing Hamiltonian-cycle or not. Actually, we will be even

less ambitious as we only try to determine the so-called threshold function of the

property P .

For a property P a function pt(n) is the threshold function if

lim
n→∞

P(G(n, p(n)) ∈ P ) =

{
1 if p(n)

pt(n)
→∞,

0 if p(n)
pt(n)
→ 0.

If the probability of a (sequence of) events converge to 1 then we simply say that

the considered event asymptotically almost surely happens. From the definition of
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the threshold function it is clear that being a threshold function is not a uniquely de-

termined function. For instance, if pt(n) is a threshold function then for any positive

constant c the function cpt(n) is also a threshold function. Another observation is

that the definition suggests that we only consider a threshold function if increasing

p(n) also increases P(G(n, p(n)) ∈ P ). This happens if the property P is monotone

increasing, this means that if G has property P , then adding edges to G won’t lead

out from P . For instance, if G has a Hamiltonian-cycle and we add some edges,

then the obtained graph will have a Hamiltonian-cycle too. If the chromatic number

is at least 100, then no matter how many edges we add the chromatic number will

be at least 100. But for instance, if we consider the planarity of G then we should

study the property that at which p will G(n, p) likely to loose the planarity. This is

a monotone decreasing property.

? ? ?

Now let us consider a concrete example: at which p the graph K4 will appear in

G(n, p)?

Theorem 2.6.4. The threshold function of the appearance of K4 is n−2/3.

Remark 2.6.5. We can rephrase the claim as follows: the threshold function of the

property ω(G) ≥ 4 is n−2/3.

Proof. Let S be a subset of size 4 of V (G), where G = G(n, p) is a random graph.

Let AS be the event that S induces a K4 in G, and let XS be the indicator random

variable of AS. Let X be the number of K4 in G. Then

X =
∑

S⊆V (G)
|S|=4

XS.

Whence

EX =
∑

S⊆V (G)
|S|=4

EXS =

(
n

4

)
p6 ≤ (pn2/3)6

24
.

If p(n)n2/3 →n→∞ 0 then EX → 0 as n→∞. Hence using P(X = 0) ≥ 1− EX we

get that

lim
n→∞

P(ω(G) ≥ 4) = 0.
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Now suppose that p(n)n2/3 →n→∞ ∞. Then EX → ∞ as n → ∞. We will use

Theorem 2.6.1; since all sets of size 4 looks the same way, the random variables XS

are symmetric. Note that S ∼ T if |S ∩ T | ≥ 2, otherwise the events AS and AT

are independent since they don’t have a common edge. Let us fix a set S. Then

then there are 6
(
n−2

2

)
= O(n2) sets T that intersects S in 2 elements and there

are 4
(
n−3

1

)
= O(n) sets T intersecting S in 3 vertices. In the former case we have

P(AT |AS) = p5, while in the latter case P(AT |AS) = p3. Then

∆∗ = O(n2p5) +O(np3) = o(n4p6) = o(EX)

since p(n)n−2/3 →∞. Hence by Theorem 2.6.1 the graph K4 appears asymptotically

almost surely.

Now let us consider the bit more general problem of determining the threshold

function of the appearance of a given graph H. After a quick check of the proof

concerning K4 we see that the value 2/3 comes from the ratio of the vertices and

edges of K4. This may prompt us to believe that this is also the answer for the

general question, i. e., for any graph H the threshold function is n−v(H)/e(H). There

is a minor problem with this idea: in order to make sure that H appears one needs

that all subgraphs H ′ also appears, and it might very easily occur that for some

H ′ the value n−v(H′)/e(H′) is bigger than n−v(H)/e(H). This motivates the following

definition.

Definition 2.6.6. Let H be a graph with v vertices and e edges. We call the quantity

ρ(H) = e
v

the density of H. We say that a graph H is balanced if for all subgraph H ′

we have ρ(H ′) ≤ ρ(H). The graph H is said to be strictly balanced if for all proper

subgraph H ′ we have ρ(H ′) < ρ(H).

The proof of the next theorem practically does not require any new idea.

Theorem 2.6.7. Let H be a balanced graph with n vertices and e edges. Let PH be

the property that H is a (not necessarily induced) subgraph of a graph G. Then the

threshold function of PH is p = n−v/e.

Proof. For all subsets S of size v let AS be the event that H is a subgraph of G[S].

Then

pe ≤ P(AS) ≤ v!pe.
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Let XS be the indicator random variable of AS. Furthermore, set X =
∑
|S|=vXS.

Hence the event that G contains H occurs if and only if X > 0. By the linearity of

expectation we get that

EX =
∑
|S|=v

EXS =

(
n

v

)
P(AS) = Θ(nvpe).

Hence if p(n)ne/v → 0, then EX = o(1), thus X = 0 asymptotically almost surely.

Now suppose that p(n)ne/v →∞. Then EX →∞. Let us consider ∆∗. (We can

do it as the events AS are symmetric.). If S ∼ T then 2 ≤ |S ∩ T | ≤ v − 1. Then

∆∗ =
∑
T∼S

P(AT |AS) =
v∑
i=2

∑
|T∩S|=i

P(AT |AS).

Let i be fixed. Then there are
(
v
i

)(
n−v
v−i

)
= O(nv−i) ways to choose a set T intersecting

S in exactly i vertices. The subgraph induced by S ∩ T has i vertices and since H

was balanced, the intersection contains at most i e
v

edges. So there are at least e− i e
v

edges of T not in the intersection with S. Whence

P(AT |AS) = O(pe−i
e
v ).

Hence

∆∗ =
v−1∑
i=2

O(nv−ipe−i
e
v ) =

v−1∑
i=2

O((nvpe)1−i/v) =
v−1∑
i=2

o(nvpe) = o(EX)

since nvpe → ∞. By Theorem 2.6.1 we get that H appears in G asymptotically

almost surely.

Next we study the isolated vertices and connectedness of G(n, p).

Theorem 2.6.8. Let ω(n) → ∞. Furthermore, let p`(n) = (log n − ω(n))/n and

pu(n) = (log n+ω(n))/n. Then G(n, p`(n)) contains an isolated vertex asymptotically

almost surely while G(n, pu(n)) does not contain isolated vertex vertex asymptotically

almost surely.

Proof. First we prove that G(n, pu(n)) does not contain an isolated vertex asymp-

totically almost surely. From now on let p = pu(n). Let X be the number of isolated

vertices, and Xv be the indicator random variable of v being an isolated vertex. Then

X =
∑
v∈V

Xv.
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Observe that P(Xv = 1) = (1 − p)n−1. We can assume that p ≤ 1/2 (Why? Evolu-

tion!). Then

EX =
∑
v∈V

EXv = n(1−p)n−1 =
1

1− p
n(1−p)n ≤ 2ne−pn = 2ne− logn+ω(n) = 2e−ω(n) → 0.

as n→∞. Then

P(X = 0) ≥ 1− EX → 1.

Next we show that G(n, p`(n)) contains an isolated vertex asymptotically almost

surely. From now on let p = p`(n). As before, let X be the number of isolated

vertices, and Xv be the indicator random variable of v being an isolated vertex.

Then X =
∑

v∈V Xv, and P(Xv = 1) = (1− p)n−1. Hence

EX =
∑
v∈V

EXv = n(1− p)n−1 ∼ ne− logn+ω(n) = eω(n) →∞.

Let us determine EX2.

EX2 =
∑
v∈V

EX2
v + 2

∑
u,v∈V

EXuXv = n(1− p)n−1 + n(n− 1)(1− p)2n−3.

Whence

Var(X) = EX2 − (EX)2 = n(1− p)n−1 + n(n− 1)(1− p)2n−3 − n2(1− p)2(n−1) ≤

≤ n(1−p)n−1+n2(1−p)2n−3−n2(1−p)2(n−1) = n(1−p)n−1+pn2(1−p)2n−3 = EX+
p

1− p
(EX)2

Thus

P(X = 0) ≤ Var(X)

(EX)2
≤ 1

EX
+

p

1− p
→ 0

since
p

1− p
≤ 2p ≤ 2 log n

n
,

if n is large enough. Hence G(n, pa(n)) contains an isolated vertex asymptotically

almost surely.

Theorem 2.6.9. Let ω(n) → ∞. Furthermore, let p`(n) = (log n − ω(n))/n and

pu(n) = (log n + ω(n))/n. Then G(n, p`(n)) is disconnected asymptotically almost

surely while G(n, pu(n)) is connected asymptotically almost surely.
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Proof. It is clear from the previous theorem that G(n, p`(n)) is disconnected asymp-

totically almost surely since it contains an isolated vertex with high probability. So

we only need to prove that G(n, pu(n)) is connected asymptotically almost surely.

This is stronger than what we proved earlier, namely that it does not contain an iso-

lated vertex. From now on let p = pu(n), and let Xk denote the number of connected

components of size k. Furthermore, let

X =

bn/2c∑
k=1

Xk.

This is the number of connected components of size at most bn/2c. Note that if G

is connected, then X = 0, and if G is disconnected then X ≥ 1 non-negative integer.

Since P(X = 0) ≥ 1− EX we only need to prove that EX → 0 as n→∞.

Let f(k, p) be the probability that a random graph G(k, p) is connected. For a

set S let XS be indicator random variable that the graph induced by the set S is a

connected component of G(n, p). Then

EXS = P(XS = 1) = f(|S|, p)(1− p)|S|(n−|S|)

since there must be no edge between S and V \ S and the induced subgraph must

be connected. Then

EX = E

 ∑
1≤|S|≤bn/2c

XS

 =

bn/2c∑
k=1

(
n

k

)
f(k, p)(1− p)k(n−k).

Since f(k, p) ≤ 1 we have

EX ≤
bn/2c∑
k=1

(
n

k

)
(1− p)k(n−k).

We have
bn/2c∑
k=1

(
n

k

)
(1− p)k(n−k) ≤

bn/2c∑
k=1

(en
k

)k
e−pk(n−k).
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Here one term can be bounded as follows:(en
k

)k
e−pk(n−k) = exp

(
k(1 + log n− log k)− k(n− k)

log n+ ω(n)

n

)
= exp

(
−ω(n)

k(n− k)

n

)
· exp

(
k

(
1 +

k

n
log n− log k

))
≤ exp

(
−ω(n)

n− 1

n

)
· exp

(
k

(
1 +

k

n
log n− log k

))
≤ exp

(
−ω(n)

n− 1

n

)
e−k.

if 300 ≤ k ≤ n/2, and less than some constant C exp
(
−ω(n)n−1

n

)
for 1 ≤ k ≤ 299.

Indeed, if x = k
n

then

2 +
k

n
log n = 2 + x log

k

x
= 2 + x log

1

x
+ x log k ≤ 2 +

1

2
log 2 +

1

2
log k ≤ log k

for k ≥ 300. Then

bn/2c∑
k=1

(
n

k

)
(1−p)k(n−k) ≤ exp

(
−ω(n)

n− 1

n

)
·

(
299∑
k=1

C +
∞∑

k=300

e−k

)
= C ′ exp

(
−ω(n)

n− 1

n

)
.

This last expression goes to 0 as n→∞. Hence

P(G(n, p) is not connected)→ 0.

We are done.

Remark 2.6.10. Another way to estimate the sum

bn/2c∑
k=1

(
n

k

)
(1− p)k(n−k)

is the following.

bn/2c∑
k=1

(
n

k

)
(1−p)k(n−k) ≤

bn/2c∑
k=1

(en
k

)k
e−pk(n−k) =

bn/2c∑
k=1

(en
k
epke−pn

)k
=

bn/2c∑
k=1

(
e1−ω(n) e

pk

k

)k
.

The function epx/x is convex on the interval [0,∞) for arbitrary p. In particular,

it takes its maximum at one of the end points on the interval [1, n/2]. At 1 this

function is at most e. At n/2 we can assume that ω(n) ≤ log n and we get that the

value of the function is at most 2. So on the whole interval it is at most e. Hence

bn/2c∑
k=1

(
e1−ω(n) e

pk

k

)k
≤
bn/2c∑
k=1

(
e2−ω(n)

)k ≤ e2−ω(n)

1− e2−ω(n)
→ 0.
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3. Polynomials

3.1 Schwartz–Zippel Lemma

Theorem 3.1.1 (Schwartz–Zippel). Let F be an arbitrary field. Let S be a finite

subset of F. Suppose that p(x1, . . . , xm) is a polynomial of degree d with coefficients

from F. Then the number of (s1, . . . , sm) ∈ Sm with p(s1, . . . , sm) = 0 is at most

d|S|m−1. In other words, if we choose s1, . . . sm ∈ S independently and uniformly at

random, then the probability that p(s1, . . . , sm) = 0 is at most d
|S| .

Proof. We prove the claim by induction on m. For m = 1 the statement claims

that a univariate degree d polynomial has at most d zeros, this is well-known. Now

suppose that m > 1. Let us write p(x1, . . . , xm) in the following form:

p(x1, . . . , xm) =
k∑
j=0

pj(x1, . . . , xm−1)xjm,

where k = degxm p. Note that deg pk(x1, . . . , xm−1) = d− k. Let

S0 = {(s1, . . . , sm−1) | si ∈ S, pk(s1, . . . , sm−1) = 0},

and

S1 = {(s1, . . . , sm−1) | si ∈ S, pk(s1, . . . , sm−1) 6= 0},

By induction on m we have |S0| ≤ (d − k)|S|m−2. If (s1, . . . , sm−1) ∈ S1, then the

polynomial

p(s1, . . . , sm−1, xm) =
k∑
j=0

pj(s1, . . . , sm−1)xjm,

has at most k solutions. Hence the number of solutions of p(s1, . . . , sm) = 0 with

s1, . . . , sm ∈ S is at most |S0| · |S|+ |S1|k ≤ (d−k)|S|m−2 · |S|+ |S|m−1 ·k = d|S|m−1.

We are done.
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3.2 Perfect matchings in bipartite graphs

In this section we show how we can use the Schwartz-Zippel lemma to decide whether

a bipartite graph contains a perfect matching. Suppose that G = (A,B,E) is a

bipartite graph such that |A| = |B| = n. For sake of simplicity we assume that the

elements of A and B are labelled by the elements of {1, 2, . . . , n}. Let us introduce

the matrix R of size n × n as follows: Rij = xij if i ∈ A and j ∈ B are adjacent,

and Rij = 0 if they are not adjacent. Here xij is just a variable. Note that if

G does not contain a perfect matching, then det(S) = 0. If it contains a perfect

matching, say M , then nothing cancels the term (−1)s
∏

(i,j)∈M xij in the expansion

of det(S). In this case det(S) is a multivariate polynomial of degree n. Note that we

cannot use Gauss elimination to a matrix containing variables (why?), but we can

do the following: we randomly substitute elements of S into xij and check whether

the determinant is non-zero or not. If det(R) 6= 0, then the probability that after

the evaluation the result is 0 is at most n
|S| . So choose a set S of size 4n and do

the following algorithm: pick random elements of S and evaluate det(R). If it is

non-zero, then G has a perfect matching. If it is 0, then output that it has no perfect

matching. The probability that the algorithm errs, that is, it has a perfect matching,

is at most 1/4. Iterating this process t times the probability that the algorithm errs

is at most 1/4t.

One detail that might be interesting is that it is worth choosing the set S in a

finite field Fp. This way we can save the trouble with counting with fractions or with

large numbers. So we choose a prime p bigger than 4n, and we can even choose S

to be the whole Fp.
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4. Generating Functions

4.1 Two ways of generating functions

The method of generating functions is a powerful tool in enumerative combinatorics.

It allows to obtain combinatorial identities by simple algebraic manipulations. The

generating function of a sequence (an) is simply

∞∑
n=0

anx
n.

One can look at this expression in two different ways. On the one hand, this is just

an analytic object, a power series or if you wish, a Taylor-series. On the other hand,

one can look at it as a purely algebraic object, the element of the ring{
∞∑
n=0

cnx
n | cn ∈ F

}
,

where F is some field. Both approaches have advantages: when we think of it as an

analytic object we can use all our knowledge from analysis. When we consider it as

an algebraic object we don’t have to check every time the convergence of the series.

The element
∑∞

n=0 n!xn is a perfectly acceptable element of the above ring in spite

of the fact that it never converges for |x| > 0. Honestly, we will do a sloppy, but

justifiable thing in this chapter: we consider them as algebraic elements and don’t

check the convergence, but at the same time we use our analysis knowledge. For

instance, we will use that ex =
∑∞

n=0
xn

n!
without elaborating on the question what

does it actually mean in an algebraic sense. We will even do differentiation and

integration, and this can be formalized in an algebraic way again, but we will not

care about building up a formal theory, we simply accept that it works in analysis

so it should work here too. One thing that we don’t do is that we don’t plug any

value in a formal power series since we never actually checked the convergence.
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In order to use generating functions we need the closed form of some power series.

One of the most important is

1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + . . .

Binomial theorem gives a finite generating function:

(1 + x)n =
n∑
k=0

(
n

k

)
xk.

There is a similar generating function where the running parameter in the binomial

coefficient is the top one:

xm

(1− x)m+1
=
∞∑
k=0

(
k

m

)
xk.

(Note that
(
k
m

)
= 0 if 0 ≤ k < m.) You will prove this result at the recitation. The

more power series you learn, the more chance you have for obtaining identities just

by algebraic manipulations.

I feel a bit awkward to mention it, but experience shows that even at Msc students

I have to say a few words about algebraic manipulations. Algebraic manipulations

requires some skill (but not too much knowledge). For instance, one needs to change

the order of summations frequently. Please, make sure that you can change the order

of the summations in a double sum like

∞∑
m=0

m∑
k=0

mk2xk.

If you are unsure what to do, then draw a 2-dimensional table with running param-

eters m and k, and check that at which field there is a non-zero element, and what

happens if you switch to summation for columns instead of rows. Another related

advice that if you have a recursion formula for a sequence (an) and you have to

determine the generating function
∑
anx

n, then it is worth writing out the first few

elements separately, because the recursion may act differently there.

Suggested reading: H. Wilf: generatingfunctionology [12]. This book is available

online.
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4.1.1 Exponential generating functions

Besides studying ordinary generating functions sometimes it will be more convenient

to work with the so-called exponential generating function of a sequence (an):

∞∑
n=0

an
xn

n!
.

It requires some skill to decide that in a certain problem we need to use ordinary

or exponential generating functions. A strong hint that we need to use exponential

generating function is that the sequence (an) grows faster then Cn for any C, for

instance an = n!. Some recursions also give a hint that it is better to use exponential

generating functions.

4.2 Enumeration theory and generating functions

The goal of this section is to show some examples of generating functions in enumera-

tive combinatorics. First we will study the so-called Bell-numbers. The Bell-number

Bn counts the number of ways to decompose the set {1, 2, . . . , n} into non-empty

subsets. For instance, B3 = 5 since the set {1, 2, 3} can be decomposed as follows:

{1, 2, 3}; {1, 2}{3}; {1, 3}{2}; {2, 3}{1}; {1}{2}{3}. It is worth defining B0 to be 1.

Theorem 4.2.1. Let Bn denote the number of ways one can decompose the set

{1, 2, . . . , n}.

(a) Then Bn satisfies the recursion

Bn =
n∑
k=0

(
n− 1

k

)
Bk.

(b) Let us consider the exponential generating function B(x) =
∑∞

n=0Bn
xn

n!
. Then

B(x) = ee
x−1

(c) We have

Bn =
1

e

∞∑
k=1

kn

k!
.
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Proof. (a) Let us choose k elements from {1, 2, . . . , n− 1} that are not in the same

set of the partition that contains the element n. We can do it
(
n−1
k

)
ways, and then

we can partition it in Bk ways. (Note that B0 = 1 corresponds to the partition into

the single set {1, 2, . . . , n}.) Hence

Bn =
n∑
k=0

(
n− 1

k

)
Bk.

(b) First we show that B(x)ex = B′(x) by using the recursion proved in part (a).

Note that

B(x)ex =

(
∞∑
n=0

Bn
xn

n!

)(
∞∑
n=0

xn

n!

)
=
∞∑
n=0

(
n∑
k=0

(
n

k

)
Bk

)
xn

n!
=
∞∑
n=0

Bn+1
xn

n!
.

On the other hand,

B′(x) =

(
∞∑
n=0

Bn
xn

n!

)′
=
∞∑
n=1

Bn
xn−1

(n− 1)!
=
∞∑
n=0

Bn+1
xn

n!
.

Hence B(x)ex = B′(x). Next we solve this differential equation: B′(x)
B(x)

= ex. Here
B′(x)
B(x)

= (lnB(x))′, so lnB(x) = ex + c, thus B(x) = ee
x+c. To find the correct value

of c observe that B(0) = 1, and so c = −1. Hence

B(x) = ee
x−1.

(c) We have

B(x) =
∞∑
n=0

Bn
xn

n!
= ee

x−1 =
1

e
ee
x

=
1

e

∞∑
k=0

ekx

k!
=

1

e

∞∑
k=0

1

k!

∞∑
n=0

(kx)n

n!
=
∞∑
n=0

xn

n!

(
1

e

∞∑
k=0

kn

k!

)

Hence

Bn =
1

e

∞∑
k=1

kn

k!
.

Remark 4.2.2. I really like Theorem 4.2.1 as it shows a compact story how gener-

ating functions work. First we establish a recursion formula from the combinatorial

definition. Then we turn it into a generating function. Finally with some algebraic

manipulation we deduce some identity that is on the verge of black magic.
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Next we study the so-called Stirling-numbers of second kind. This is a refinement

of the Bell-numbers.

Let
{
n
k

}
denote the number of ways to decompose the set {1, 2, . . . , n} into exactly

k non-empty sets. For instance, we have
{
n
1

}
= 1 and

{
n
n

}
= 1 for all n, and for

instance
{

3
2

}
= 3. Clearly,

Bn =
n∑
k=1

{n
k

}
.

In order to be able to compute various generating functions of the Stirling-

numbers we need some recursion formula for them.

Proposition 4.2.3. We have{n
k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
.

Proof. Let us consider the partitions of the set {1, 2, . . . n} into k non-empty sets.

The number of partitions in which the element n itself determine a set is
{
n−1
k−1

}
since

we can decompose the remaining n− 1 elements to k − 1 sets in
{
n−1
k−1

}
ways. If the

element n does not determine a set itself then we can decompose the remaining n−1

elements into k parts and we can put the element n into any of the k sets. Hence{n
k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
.

Proposition 4.2.4. We have∑
k

{n
k

}
x(x− 1) . . . (x− k + 1) = xn.

First proof. We prove this identity by induction on n using the recursion formula of

the previous proposition: {n
k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
.
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For n = 1 the statement is trivial. Then

RHS =
n∑
k=1

{n
k

}
x(x− 1) . . . (x− k + 1)

=
n∑
k=1

({
n− 1

k − 1

}
+ k

{
n− 1

k

})
x(x− 1) . . . (x− k + 1)

=
n∑
k=1

{
n− 1

k − 1

}
x(x− 1) . . . (x− k + 1) +

n∑
k=1

k

{
n− 1

k

}
x(x− 1) . . . (x− k + 1)

=
n∑
k=1

{
n− 1

k

}
x(x− 1) . . . (x− k) +

n∑
k=1

k

{
n− 1

k

}
x(x− 1) . . . (x− k + 1)

=
n∑
k=1

{
n− 1

k

}
(x(x− 1) . . . (x− k) + kx(x− 1) . . . (x− k + 1))

=
n∑
k=1

{
n− 1

k

}
x(x− 1) . . . (x− k + 1)((x− k) + k)

= x
n∑
k=1

{
n− 1

k

}
x(x− 1) . . . (x− k + 1)

= x · xn−1

= xn.

Second proof. First let us prove the statement for positive integers x. Let us color

each element of the set {1, 2, . . . , n} with x colors. The number of such coloring is

clearly xn. On the hand, we can count this colorings as follows. First we decompose

the set into k sets, these will be the color classes. We can color the first set in x

ways, the second one in x − 1 ways, the third one in x − 2 ways... By summing up

this for all k we get that∑
k

{n
k

}
x(x− 1) . . . (x− k + 1) = xn.

Since both sides is a polynomial that agree on all positive integers, they must be the

same polynomial.

Once we have set up a recursion we can start proving closed forms for various

generating functions.
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Proposition 4.2.5. For all k ≥ 1 we have∑
n≥0

{n
k

}
xn =

xk

(1− x)(1− 2x) . . . (1− kx)
.

Proof. Let

Fk(x) =
∑
n≥0

{n
k

}
xn.

Using the recursion formula we have

Fk(x) =
∑
n≥0

{n
k

}
xn =

∑
n≥0

({
n− 1

k − 1

}
+ k

{
n− 1

k

})
xn = xFk−1(x) + kxFk(x).

Hence

Fk(x) =
x

1− kx
Fk−1(x).

As we have mentioned
{
n
1

}
= 1 by definition, so F1(x) = x

1−x . Thus we can conclude

that ∑
n≥0

{n
k

}
xn =

xk

(1− x)(1− 2x) . . . (1− kx)
.

In the same vain we can determine the exponential generating functions of the

Stirling-numbers of the second kind.

Proposition 4.2.6. For all k ≥ 1 we have∑
n≥0

{n
k

} zn
n!

=
(ez − 1)k

k!
.

Proof. Let

Fk(z) =
∑
n≥0

{n
k

} zn
n!
.

Then

F ′k(z) =
∑
n≥0

{n
k

} zn−1

(n− 1)!
=
∑
n≥0

({
n− 1

k − 1

}
+ k

{
n− 1

k

})
zn−1

(n− 1)!
=

= Fk−1(z) + kFk(z).

Set Gk(z) = Fk(z)e−kz. Then

G′k(z) = (F ′k(z)− kFk(z))e−kz = Fk−1(z)e−kz.
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From this it follows by induction that∑
n≥0

{n
k

} zn
n!

=
(ez − 1)k

k!
.

Clearly, if there are Stirling-numbers of the second kind then there must be

Stirling-numbers of the first kind. Indeed, the Stirling-numbers of the first kind[
n
k

]
counts the number of permutations of n elements with exactly k cycles in its

cycle representation. For instance,
[

4
2

]
= 11 since the following permutations have

2 cycles in its cycle representation: (1)(234), (1)(243), (2)(134), (2)(143), (3)(124),

(3)(142), (4)(123), (4)(132), (12)(34), (13)(24), (14)(23). Clearly,

n∑
k=1

[n
k

]
= n!.

Below we give the analogs of the above statements for the Stirling-number of the

first kind without proofs. It’s a good exercise for the recitation to prove these claims.

Proposition 4.2.7. For all k ≥ 1 we have[n
k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
.

Proposition 4.2.8. For all n ≥ 1 we have

n∑
k=0

[n
k

]
xk = x(x+ 1) . . . (x+ n− 1).

Proposition 4.2.9. We have

∑
n≥0

[n
k

] zn
n!

=
1

k!

(
log

1

1− z

)k
.

Finally, the following statement connects the Stirling-numbers of the first kind

with the Stirling-numbers of the second kind.

Proposition 4.2.10. For all integers m,n ≥ 0 we have∑
k

{n
k

}[ k
m

]
(−1)n−k =

{
1 if m = n,

0 if m 6= n.
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4.3 Snake oil method

Generating functions also provide a powerful tool to evaluate certain sums. The

so-called snake oil method is very simple, yet handles various sums. Roughly, the

idea is the following. Suppose we have some sum that we would like to evaluate,

say
∑n

k=0

(
n
k

)
. Let us call it An. Then we determine

∑∞
n=0 Anx

n: generally this

requires a change of summation and some simple algebraic manipulation. Once we

have the generating function, in our case 1
1−2x

, we start to determine its coefficients:
1

1−2x
=
∑∞

n=0 2nxn. From this we conclude that An = 2n. Below you can find several

examples for this strategy. Can you fill the gaps in the above argument?

Proposition 4.3.1. We have

n∑
k=0

(
n+ k

2k

)
2n−k =

1

3
(2 · 4n + 1).

Proof. Let

An =
n∑
k=0

(
n+ k

2k

)
2n−k.

Then

∞∑
n=0

Anx
n =

∞∑
n=0

(
n∑
k=0

(
n+ k

2k

)
2n−k

)
xn

=
∞∑
k=0

1

2k

(∑
n

(
n+ k

2k

)
(2x)n

)

=
∞∑
k=0

1

2k
(2x)k

(1− 2x)2k+1

=
1

1− 2x

∞∑
k=0

(
x

(1− 2x)2

)k
=

1

1− 2x

1

1− x
(1−2x)2

=
1− 2x

1− 5x+ 4x2
=

1− 2x

(1− x)(1− 4x)

=
2

3

1

1− 4x
+

1

3

1

1− x

=
2

3

∑
n

(4x)n +
1

3

∑
n

xn.
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Hence
n∑
k=0

(
n+ k

2k

)
2n−k =

1

3
(2 · 4n + 1).

Proposition 4.3.2. We have∑
k

(
m

k

)(
n+ k

m

)
=
∑
k

(
m

k

)(
n

k

)
2k.

Proof. Set

An =
∑
k

(
m

k

)(
n+ k

m

)
,

and

Bn =
∑
k

(
m

k

)(
n

k

)
2k

Then

∞∑
n=0

Anx
n =

∞∑
n=0

(∑
k

(
m

k

)(
n+ k

m

))
xn

=
∞∑
k=0

(
m

k

)(∑
n

(
n+ k

m

)
xn

)

=
∞∑
k=0

(
m

k

)
xm−k

(1− x)m+1

=
xm

(1− x)m+1

∑
k

(
m

k

)
x−k

=
xm

(1− x)m+1

(
1 +

1

x

)m
=

(1 + x)m

(1− x)m+1
.
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On the other hand,

∞∑
n=0

Bnx
n =

∞∑
n=0

(∑
k

(
m

k

)(
n

k

)
2k

)
xn

=
∞∑
k=0

(
m

k

)
2k

(∑
n

(
n

k

)
xn

)

=
∞∑
k=0

(
m

k

)
2k

xk

(1− x)k+1

=
1

1− x

∞∑
k=0

(
m

k

)(
2x

1− x

)k
=

1

1− x

(
1 +

2x

1− x

)m
=

(1 + x)m

(1− x)m+1
.

Hence An = Bn for all n.

Proposition 4.3.3. We have

n∑
k=0

(−1)n−k
(

2k

k

)(
k

n− k

)
= 2n.

Proof.

An =
n∑
k=0

(−1)n−k
(

2k

k

)(
k

n− k

)
.

Then

∞∑
n=0

Anx
n =

∞∑
n=0

(
n∑
k=0

(−1)n−k
(

2k

k

)(
k

n− k

))
xn

=
∞∑
k=0

(
2k

k

)
xk

(∑
n

(
k

n− k

)
(−x)n−k

)

=
∞∑
k=0

(
2k

k

)
xk(1− x)k =

∞∑
k=0

(
2k

k

)
(x(1− x))k

=
1√

1− 4x(1− x)

=
1

1− 2x

=
∞∑
n=0

2nxn.
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Hence
n∑
k=0

(−1)n−k
(

2k

k

)(
k

n− k

)
= 2n.
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5. Elements of Machine Learning

Machine learning is probably one of the fastest developing part of science with many

impressive applications throughout the various aspects of life ranging from voice

recognition through spam filters to medical applications. In spite of these fantastic

applications the goal of this chapter is not really to teach machine learning, rather an

advertisement to your own math knowledge through machine learning. So I picked

(rather randomly) elements of machine learning where the underlying mathematics

is also interesting.

5.1 Classifiers

A large body of machine learning treats the following problem: given examples with

labels yes or no (true-false, cat-dog etc) and we try to find a (simple) rule that labels

future examples correctly. For instance, a machine is given pictures of cats and dogs

with correct labels of cat and dog, and the task is to teach the machine to find a

pattern that enables it to label future pictures of cats and dogs properly. There are

very many different classifiers: bayesian classifiers, decision tree classifiers, nearest

neighbor classifiers, linear and polynomial classifiers, artificial neural networks to

mention a few. In the next section we investigate a linear classifier called perceptron

algorithm.

5.1.1 Linear classifier

Suppose that we would like to buy a vacuum cleaner. We consider three attributes

of a vacuum cleaner important: suction power, sound (how noisy it is) and price. We

can quantify every vacuum cleaner with three numbers this way, so we can associate

a point in R3 to each vacuum cleaner. Suppose that we label 100 vacuum cleaners

whether a consumer would buy it or not. The task of a classifier is to find out the
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consumer’s taste, that is, label the remaining 10000 vacuum cleaners whether (s)he

would buy it or not. Quite often it is possible to find a hyperplane that separates

positive examples from negative ones. (Intuitively, humans often consider some (not-

quantified) weighted sum that explains their shopping decisions.) So after this long

introduction we can formulate it as a mathematical question.

Problem 5.1.1. Given x1, x2, . . . , xn ∈ Rd with labels c(xj) ∈ {−1, 1}. Suppose

that we get the promise that there exists a vector c ∈ Rd and b ∈ R such that

{xj | c(xj) = 1} = {xj | (c, xj) > b} and {xj | c(xj) = −1} = {xj | (c, xj) < b}.

Problem: find algorithmically (in a fast way!) a c′ and b′ such that

{xj | c(xj) = 1} = {xj | (c′, xj) > b′} and {xj | c(xj) = −1} = {xj | (c′, xj) < b′}.

In what follows we will assume that b = 0, that is, the separating hyperplane

goes through 0, and we would like to find such a hyperplane. The general case can

be reduced to this special case by considering the points (xj, 1) ∈ Rd+1, and the last

coordinate of c ∈ Rd+1 will correspond to −b.
Here is the solution of Rosenblatt called perceptron.

Algorithm 5.1.2. (Perceptron algorithm) Let w = 0.

1. If there exists an xj such that sign(w, xj) 6= c(xj), then let w = w + c(xj)xj.

2. If there exists no xj such that sign(w, xj) 6= c(xj) then output c′ = w. Otherwise

go to step 1.

It is clear that if the perceptron algorithm halts, then it outputs a separating

hyperplane. The question is why it halts and how many steps.

Theorem 5.1.3. Given x1, x2, . . . , xn ∈ Rd with labels c(xj) ∈ {−1, 1}. Suppose

that we get the promise that there exists a vector c ∈ Rd such that

{xj | c(xj) = 1} = {xj | (c, xj) > 0} and {xj | c(xj) = −1} = {xj | (c, xj) < 0}.

Let R = maxj=1,...,n ||xj|| and γ = minj=1,...,n |(xj, c)|. Then the perceptron algorithm

halts in R2

|c|2γ2 steps.

Proof. Let w0 = 0, and for a general k if there exists an xj such that sign(wk, xj) 6=
c(xj), then let wk+1 = wk + c(xj)xj. Observe that

(wk+1, c) = (wk, c) + c(xj)(xj, c) ≥ (wk, c) + γ
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since sign(xj, c) = c(xj). Secondly,

(wk+1, wk+1) = (wk, wk)+2c(xj)(wk, xj)+(xj, xj) < (wk, wk)+(xj, xj) ≤ (wk, wk)+R
2

since sign(wk, xj) 6= c(xj) means that 2c(xj)(wk, xj) < 0. So after M steps we get

that

(wM , c) > Mγ and (wM , wM) < MR2.

Now let us use the Cauchy-Schwarz inequality:

MR2(c, c) > (wM , wM)(c, c) ≥ (wM , c)
2 ≥M2γ2.

Hence M < R2|c|2
γ2

.

As we have seen the above algorithm directly turns into a machine learning

problem. Suppose we want to find out the taste of a consumer on vacuum cleaners

in order to sell him the most expensive one. We show him a few vacuum cleaners

and ask him/her to label it whether he would buy it or not. Then we choose a

hyperplane that separates the positive examples from negative examples. Then we

use this hyperplane for our prediction to unlabeled vacuum cleaners (and then we try

to sell the most expensive one that is predicted to be vendible). Note that we never

said that it is the correct hyperplane, we only said that we will use this hyperplane

for our prediction.

Let’s phrase it in a machine learning language. We had a training set S (later it

will be convenient to think of it as a sequence of examples) that were labeled and our

task was to label future examples. This was a classification problem, we trained

a classifier. Another type of machine learning problems is regression, where we

have to predict a value and not a label. This was a supervised learning since

we got the labels. This was also batch learning protocol which means that we

got a lot of examples and we needed to act only after studying them, the opposite

is when we have to act online so the learning and decision making happens at the

same time like in a case of a stockbroker. This was a passive learner since we had

no chance to select what examples are to be labelled, an active learner can select

which examples should be labelled.

What is more interesting that we assumed that a half-space gives the correct

labeling and we were looking for our prediction already in this form. These are two

different things: we can search for the solution in a form of hyperplane even if nobody

guarantees that the ultimately correct labeling is in this form. In machine learning
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language we had a hypothesis class H, the set of half-spaces in our example. So

our output of the learning was a h ∈ H, a prediction rule (also called predictor,

hypothesis or classifier). One might wonder why we made this assumption. We

will see later that it is absolutely necessary for learning that we have some prelimi-

nary assumptions on the problem. A final observation is that even though we were

promised to have an optimal hyperplane it was still an algorithmic challenge to

find such a hyperplane, and of course nothing guarantee that it is the optimal hyper-

plane and future examples will be labelled properly by the prediction rule we have

found.

5.1.2 Formal model for the statistical learning framework

In this section we try to formalize what we mean by statistical learning.

Domain set: An arbitrary set X . This is the set of objectes that we wish to label.

Usually, these domain points will be represented by a vector of features. We will

also call the elements of X instances, and X the instance space.

Label set: It can be {yes, no} or {dog, cat, bird} so any set. We will denote by Y the

set of possible labels. Actually, we can use this framework for regression problems

too when we have to predict a value instead of a label, so Y can R too.

Training data: A sequence S = ((x1, y1), . . . , (xm, ym)) is a finite sequence of pairs

in X × Y . So this is a sequence of labeled domain points. This is the input of the

learner. These are also called training examples or training set (although we will

treat them as a sequence).

The learner’s output: This is a function h : X → Y . It is called prediction rule,

predictor, hypothesis, classifier. If we want to emphasize that this function was

produced by an algorithm A based on the training set S, then we denote it by A(S).

We will often assume that there is a hypothesis class H from which we choose the

function h.

Measuring success: Let us introduce a loss function ` : H × X × Y → R≥0

that measures how successful the hypothesis h on an element (x, y) ∈ X × Y . For

instance, if Y is a set of labels, then we may say that

`0−1(h, (x, y)) =

{
0 ifh(x) = y

1 ifh(x) 6= y
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In the continuous case (regression problem), when the prediction rule outputs a

number we might use the loss function `((h, (x, y)) = (h(x)− y)2.

Next we define the risk function. Here we assume that there is a probability

distribution D on X ×Y . For instance, this might be the uniform distribution on all

vacuum cleaners (with a hypothetical label on it). Then

LD(h) := E(x,y)∼D`(h, (x, y)).

Note that D is not known. Also note that it can occur that PD(x, y1) > 0 and

PD(x, y2) > 0 with different y1 and y2. For instance, if there are two vacuum cleaners

with the same parameters (suction power, sound and price), but with different colors

and our costumer would only buy the blue one, then it results an (x, y) for which

1 > PD(x, y) > 0. We also have an empirical risk:

LS(h) :=
1

m

m∑
i=1

`(h, (xi, yi)).

Empirical risk minimization: In many cases we will assume that there is an

(efficient) algorithm that outputs an h ∈ H minimizing LS(h). Note that there can

be many such h ∈ H. Our hope is that if m is large (the size of the training data),

then LD(h) will not much larger than LS(h). Formalizing this idea will be the content

of the next section.

Realizability assumption: In the above example we assumed that there exists a

hyperplane that separates all instances well, not just the training set, that is, there

exists an h∗ such that LD(h∗) = 0. This is called realizability assumption. It often

simplifies mathematical examination, but not a natural assumption in real world

applications.

5.2 PAC-learning

In this section we elaborate on the problem when we can expect that a prediction

rule output by the empirical risk minimization is indeed a good predictor. So what

can go wrong? The first thing that we might think of that the training set S was not

very similar to the distribution D or did not catch some important characteristic of
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D. This can always happen even if with not too high probability. So we can never be

absolutely sure that our prediction rule will work well on D too. Another important

observation is that the role of H is crucial. If it contains too few functions, then

there is no chance for a good learner. But it is also a problem if it contains too many

functions: there will be minimizers that works well on the training set S, but badly

on all examples. For instance, if H contains all functions, then the function h with

h(x) =

{
y ifx ∈ S
0 ifx /∈ S

is perfect on S, but unlikely to be good on all instances. The theory of PAC-

learnability addresses these issues. PAC stands for Probably Approximately Correct.

Here the word probably refers to the phenomenon that S might have been unchar-

acteristic, approximately correct refers to the phenomenon that we cannot expect a

perfect predictor even if S was a good sample. The formal definition is as follows.

Definition 5.2.1. (Agnostic PAC-learnability for general loss function) A hypothesis

class H is agnostic PAC-learnable with respect to X ×Y and a loss function ` : H×
X ×Y → R≥0 if there exists a function mH : (0, 1)2 → Z≥0 and a learning algorithm

with the following property: for every ε, δ ∈ (0, 1) and for every distribution D on

X ×Y , when running the algorithm on m ≥ mH(ε, δ) examples generated by D, the

algorithm outputs an h ∈ H such that with probability at least 1−δ (over the choice

of the m training examples) we have

LD(h) ≤ inf
h′∈H

LD(h′) + ε.

5.2.1 VC-dimension

In this section we introduce the concept of Vapnik-Chervonenkis dimension or as it

is more commonly called, the VC-dimension.

Definition 5.2.2. An S = (X,R) is called a range space, where X is a finite or

infinite set, and R is a finite or infinite family of subsets of X. The elements of X

are called points, the elements of R are called ranges.

If A ⊆ X, then PR(A) = {r ∩ A| r ∈ R} is the projection of R on A.

We say that A is shattered if PR(A) contains all subsets of A. The VC-dimension

of S –denoted by V C(S)– is the maximum cardinality of a shattered subset.
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Example 5.2.3. Let X = R2, and let R contain all half planes. Then three points

in general position can be shattered, but no matter how we take 4 points we cannot

shatter it. Hence V C(R2, halfplanes) = 3.

Theorem 5.2.4 (Sauer). Let (X,R) be a range space of VC-dimension d with |X| =
n. Then |R| ≤

∑d
k=0

(
n
k

)
.

Proof. Let us introduce the notation g(n, d) =
∑d

k=0

(
n
k

)
. Note that

g(n, d) = g(n− 1, d) + g(n− 1, d− 1).

We prove the claim by induction on n. For n = 1 the claim is trivial. So assume

that the claim already holds till n − 1. So let S = (X,R) be a range space of VC-

dimension d with |X| = n. Let x ∈ X arbitrary, and let us consider the following

two range spaces: S − x = (X − {x}, R− x) and S/x = (X − {x}, R/x), where

R− x = {r \ {x} | r ∈ R} and R/x = {r ∈ R | x /∈ r, r ∪ {x} ∈ R}.

Observe that the VC-dimension of S−x is at most d while the VC-dimension of S/x

is at most d− 1 (why?). Hence by induction

|R| = |R− x|+ |R/x| ≤ g(n− 1, d) + g(n− 1, d− 1) = g(n, d).

Definition 5.2.5. Let (X,R) be a range space, and let A ⊆ X be finite. For

0 ≤ ε ≤ 1 a subset B ⊆ A is an ε-sample for A if for any range r ∈ R the inequality∣∣∣∣ |A ∩ r||A|
− |B ∩ r|
|B|

∣∣∣∣ ≤ ε.

A subset N ⊆ A is an ε-net for A if any range r ∈ R satisfying |A ∩ r| > ε|A|
contains at least one point of N .

Note that every ε-net is automatically an ε-sample, but the converse is not true.

Theorem 5.2.6 (Vapnik and Chervonenkis). There exists a universal positive con-

stant c with the following properties. Let 0 < ε, δ < 1. Let (X,R) be a range space

of VC-dimension d, and let A be an arbitrary subset of X. Let

s ≥ min

(
|A|, c

ε2

(
d ln

d

ε
+ ln

1

δ

))
.

Then a random subset B of cardinality s of A is an ε-sample with probability at least

1− δ.
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Theorem 5.2.7 (Haussler and Welzl). Let 0 < ε, δ < 1. Let (X,R) be a range space

of VC-dimension d, and let A be an arbitrary subset of X. Let

m ≥ max

(
4

ε
ln

4

δ
,
8d

ε
ln

8d

ε

)
.

Then a random subset N of cardinality m of A is an ε-net with probability at least

1− δ.

We only prove Theorem 5.2.7.

Proof of Theorem 5.2.7. Let N = {x1, . . . , xm} be a random multi-subset of A ob-

tained by m independent random draws from A. Let E1 be the following event:

E1 = {∃r ∈ R | |r ∩ A| ≥ εn, r ∩N = ∅}.

We need to prove that P(E1) ≤ δ. Let T = {y1, . . . , ym} be another random multi-

subset of A obtained by m independent random draws from A. Let E2 be the

following event:

E1 = {∃r ∈ R | |r ∩ A| ≥ εn, r ∩N = ∅, |r ∩ T | ≥ εm

2
}.

Here |r ∩ T | = |{i | yi ∈ r}|. We define |r ∩ N | and |r ∩ (N ∪ T )| similarly. The

proof of Theorem 5.2.7 relies on the following two lemmas together with a small

computation.

Lemma 5.2.8. We have P(E2) ≥ P(E1).

Lemma 5.2.9. We have P(E2) ≤ g(2m, d)2εm/2.

Proof of Lemma 5.2.8. Since P(E2)/P(E1) ≥ P(E2 ∩ E1)/P(E1) = P(E2|E1) it is

enough to prove that P(E2|E1) ≥ 1
2
. Suppose that for N = {x1, . . . , xm} the event

E1 satisfies. Let us fix an r such that |r ∩ A| ≥ εn and r ∩ N = ∅. It is enough to

show that already for this fixed r we have P(|r ∩ T | ≥ εm
2

) ≥ 1
2
. Let p = |r∩A|

|A| ≥ ε

and X = |r ∩ T |. Then EX = pm and Var(X) = p(1− p)m < pm. Furthermore,

P(X <
εm

2
) = P(EX −X > (p− ε/2)m) ≤ P(|EX −X| > (p− ε/2)m)

≤ Var(X)

((p− ε/2)m)2
≤ pm

(pm/2)2
=

4

pm
≤ 1

2
.

Hence P(|r ∩ T | ≥ εm
2

) ≥ 1
2

thereby implying that P(E2|E1) ≥ 1
2
.
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Proof of Lemma 5.2.9. We can choose N and T by first choosing N ∪ T , and then

choosing N and T from N ∪ T . We have

P(E2) =
∑

S=N∪T

P(S)P(E2|S).

So it is enough to show that P(E2|S) ≤ g(2m, d)2εm/2 for every S = N ∪ T . For a

fixed S = N ∪ T let Er = {r ∩ N = ∅, |t ∩ T | ≥ εm/2}. If r ∩ S = r′ ∩ S, then

Er = Er′ . Since the VC-dimension is d, we can only have g(2m, d) different r ∩ S
sets by Theorem 5.2.4. Now fix an r ∈ R and suppose that |r∩S| = s ≥ εm/2, then

P(r ∩N = ∅ | N ∪ T = S) =
(2m− s)(2m− s+ 1) . . . (m− s+ 1)

2m(2m− 1) . . .m

=

(2m−s)!
(m−s)!
(2m)!
m!

=

m!
(m−s)!
(2m)!

(2m−s)!

=
m(m− 1) . . . (m− s+ 1)

2m(2m− 1) . . . (2m− s+ 1)
≤ 2−s ≤ 2−εm/2.

Hence P(E2|S) ≤ g(2m, d)2−εm/2.

By putting together the two lemmas we get that P(E1) ≤ 2g(2m, d)2−εm/2. It is

enough to show that if m satisfies the condition of the theorem, then

2g(2m, d)2−εm/2 ≤ δ. Note that

g(2m, d) =
d∑

k=0

(
2m

k

)
≤ 2(2m)d

even if d = 0 or 1 and for larger d even tighter inequalities are true. So

2g(2m, d)2−εm/2 ≤ 4(2m)d2−εm/2.

So it is enough to prove the inequality 4(2m)d2−εm/2 ≤ δ. This is equivalent with

2

ε
ln

(
4

δ

)
+

2d

ε
ln(2m) ≤ m.

Here 2
ε

ln
(

4
δ

)
≤ m

2
so it is enough to show that 2d

ε
ln(2m) ≤ m

2
. The derivative of the

left hand side with respect to m is 2d
εm
≤ 1

2
by the condition on m, so it is enough

to check the statement for m0 = 8d
ε

ln
(

8d
ε

)
. Let x = 8d

ε
≥ 8. Then 2 lnx ≤ x, and

so x
2

ln(x lnx) ≤ x lnx, that is, 4d
ε

ln(2m0) ≤ m0. This completes the proof of the

theorem.
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5.3 Clustering

Clustering is an important problem in the area of unsupervised machine learning. In

this section we study the so-called k-mean problem.

The mathematical formulation of the problem is quite simple. Let x1, . . . , xn ∈
Rd. In the k-mean problem the goal is to find centers C = {c1, . . . , ck} that (approx-

imately) minimizes the sum

F (C) :=
n∑
i=1

k

min
j=1
||xi − cj||2.

Once we have such centers we can cluster the points x1, . . . , xn as follows:

Cr = {xi |
k

min
j=1
||xi − cj|| = ||xr − cj||}

for r = 1, . . . , k. In words, we put the point xi into the cluster Cr if the closest point

among the centers c1, . . . , ck is cr. (In case of ties, we can randomly put the point of

xi to one of these clusters.)

Probably the most well-known algorithm for the k-means problem is Lloyd’s

algorithm.

Algorithm 5.3.1 (Lloyd). Initialize centers p
1
, . . . , p

k
by choosing them randomly

from x1, . . . , xn. Then iterate the following steps.

1. Form clusters C1, . . . , Ck by putting point xi into the cluster Cr if the closest

point among the centers p
1
, . . . , p

k
is p

r
.

2. Having clusters C1, . . . , Ck let p
r

be the center of gravity of the points in Cr, that

is,

p
r

=
1

|Cr|
∑
xi∈Cr

xi.

Stop when p
1
, . . . , p

k
does not change and output them as c1, . . . , ck.

Some words about the stopping rule. In every step F (C) strictly decreases, apart

from the case when a point has the same distance from two different centers. Since the

number of possible configurations is finite, this means that the algorithm eventually

stops. Unfortunately, there are cases when the algorithm converge very slowly. (In

fact, due to numerical inaccuracies it may even occur that the algorithm does not

converge.) So it might be useful to invent alternative stopping rules like stop when

F (C) only changes less than some preset ε.
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[6] P. Erdős, On a problem of graph theory, Math. Gaz., 47 (1963), pp. 220–223.
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