
Additional notes on combinatorial nullstellensatz
Péter Csikvári

This is some additional text to Noga Alon’s Combinatorial nullstellensatz.

1. Around the Chevalley-Warning theorem

Theorem 1.1. Let p be a prime and let Fp be the finite field with p elements,
and P1 = P1(x1, . . . , xn), . . . , Pm = Pm(x1, . . . , xn) ∈ Fp[x1, . . . , xn] such that∑m

i=1 degPi < n, then the number of common zeros of P1, . . . , Pm is divisible
by p. In particular, if they have one common zero then they have at least p
common zeros.

Lemma 1.2. Let k < p− 1 then∑
a∈Fp

ak = 0,

where we count in Fp.

Proof. The polynomial xk − 1 has at most k zeros so there must be a c 6= 0
such that ck 6= 1, since there are p− 1 non-zero elements in Fp. Let

Sk =
∑
a∈Fp

ak.

Then
ckSk = ck

∑
a∈Fp

ak =
∑
a∈Fp

(ca)k =
∑
a∈Fp

ak = Sk

since multiplying by c simply permutes the elements of Fp. Hence (ck−1)Sk =
0. Since ck − 1 6= 0 we have Sk = 0. �

Lemma 1.3. Let P = P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] such that degP < n(p−
1). Then ∑

(a1,...,an)∈Fnp

P (a1, . . . , an) = 0.

Proof. It is enough to prove the lemma for a monomial Q = xt11 . . . x
tn
n since

the claim follows from the linearity of the statement. Note that

∑
(a1,...,an)∈Fnp

Q(a1, . . . , an) =
∑

(a1,...,an)∈Fnp

at11 . . . a
tn
n =

∑
a1∈Fp

at11

 . . .

∑
an∈Fp

atnn

 .

1
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Since t1 + · · ·+ tn < n(p− 1) there is some ti such that ti < p− 1, but then∑
ai∈Fp

atii = 0

by the previous lemma. Hence

∑
(a1,...,an)∈Fnp

at11 . . . a
tn
n =

∑
a1∈Fp

at11

 . . .

∑
an∈Fp

atnn

 = 0.

�

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us consider the polynomial

P (x1, . . . , xn) =
m∏
i=1

(1− Pi(x1, . . . , xn)p−1).

Note that

degP ≤ (p− 1)

(
m∑
i=1

degPi

)
< (p− 1)n.

Hence by the previous lemma we have∑
(a1,...,an)∈Fnp

P (a1, . . . , an) = 0.

Note that if (a1, . . . , an) is not a zero of some polynomial Pi then

Pi(a1, . . . , an)
p−1 = 1

in Fp by the little Fermat’s theorem. Hence P (a1, . . . , an) = 0 in this case.
On the other hand if (a1, . . . , an) is a common zero of all polynomials Pi then
clearly P (a1, . . . , an) = 1. Hence

0 =
∑

(a1,...,an)∈Fnp

P (a1, . . . , an) = N,

where N denotes the number of common zeros of P1, . . . , Pm. Hence p | N . �

Theorem 1.4 (Erdős-Ginzburg-Ziv). Given a1, . . . , a2p−1 integers. Then there
always exists i1 < i2 < · · · < ip such that p | ai1 + · · ·+ aip.
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Proof. Clearly, we can regard a1, . . . , a2p−1 as elements of Fp. Let us consider
the polynomials

P1(x1, . . . , x2p−1) =

2p−1∑
i=1

xp−1i and P2(x1, . . . , x2p−1) =

2p−1∑
i=1

aix
p−1
i .

Note that degP1 + degP2 = 2(p − 1) < 2p − 1 = n, and P1 and P2 have
a trivial common zero, namely (0, 0, . . . , 0). Hence there is another common
zero (c1, . . . , c2p−1). Let N be the number of non-zero elements among the ci’s.
Then P1(c1, . . . , c2p−1) = N , so p | N . Note that 0 < N ≤ 2p − 1. Hence
N = p. If ci1 , . . . , cip are the non-zero elements then

0 = P2(c1, . . . , c2p−1) =

p∑
j=1

aij .

Hence we found p elements whose sum is zero in Fp. �

From this one can easily deduce the following stronger version of the Erdős-
Ginzburg-Ziv theorem.

Theorem 1.5 (Erdős-Ginzburg-Ziv). Let n be a positive integer. Given a1, . . . , a2n−1
integers. Then there always exists i1 < i2 < · · · < in such that n | ai1+· · ·+ain.

Proof. We will show that if the statement is true for integersm and k, then it is
also true for mk. Indeed, let a1, . . . , a2mk−1 be integers. Since the statement is
true form, and 2mk−1 ≥ 2m−1 there must bem integers such that their sum
is divisible bym. By rearranging the numbers we can assume thatm | a1+· · ·+
am. Let us delete these numbers from a1, . . . , a2mk−1 and repeat the argument.
Again by rearranging the numbers we can assume that m | am+1 + · · · + a2m.
Then we delete these numbers and repeat this argument. We can do it as
long as we have at least 2m − 1 numbers. After 2k − 2 rounds we still have
2mk−1−m(2k−2) = 2m−1 numbers so we can do this process 2k−1 times.
Then let us apply the statement for k and the numbers

a1 + · · ·+ am
m

,
am+1 + · · ·+ a2m

m
, . . . ,

a(2k−2)m+1 + · · ·+ a(2k−1)m
m

.

Among these 2k − 1 numbers there are k whose sum is divisible by k. This
means that among the original numbers there are mk numbers whose sum is
divisible by mk.

Since we already know that the claim is true for primes, we immediately see
that the statement is true for every positive integer n. (For n = 1 the claim is
trivial.) �
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Remark 1.6. As we have seen the heart of the argument was really the prime
case. For this special case, you can find another proof in Noga Alon’s Combi-
natorial nullstellensatz. For sake of fun, here we sketch a combinatorial proof
of this case.

If there is some t ∈ Fp which appears at least p times among a1, . . . , a2p−1
then we are done. If there is no such t element then it is possible to rearrange
the numbers as follows: a0, a1, a2, . . . , a2(p−2)+1, a2(p−1) such that a1 6= a2, a3 6=
a4, . . . , a2(p−2)+1 6= a2(p−1) (why?). Then let us consider the set Si = {a0} +
{a1, a2}+ · · ·+ {a2i−1, a2i}, it means that we consider all sums where the sum
contains exactly one element from each {a2j−1, a2j}. We will show that Si has
at least i+ 1 elements in Fp by induction. This is true for S0 and if it is true
for Si, then all we have to show is that |Si| 6= |Si+1| unless Si = Si+1 = Fp. If
|Si| = |Si+1|, then Si+a2i+1 = Si+a2i+2, but then Si = Si+(a2i+1−a2i+2) which
would mean that if r ∈ Si then r+(a2i+1−a2i+2) ∈ Si, r+2(a2i+1−a2i+2) ∈ Si,...
so Si = Fp. If |Si| 6= |Si+1| then since Si + a2i+1 ⊆ Si+1 we have |Si| < |Si+1|
so |Si+1| ≥ |Si|+ 1 ≥ i+ 2. Of course, if Si = Fp then |Si| = p ≥ i+ 1. Hence
|Sp−1| ≥ p, i. e., |Sp−1| = p and 0 ∈ Sp which means that 0 is a sum of p
elements.

Remark 1.7. One can modify the proof of Lemma 1.3 to get the following
variant of the statement: if P has degree n(p− 1) then the value of∑

(a1,...,an)∈Fnp

P (a1, . . . , an)

only depends on the coefficient of the term xp−11 . . . xp−1n . If it is not 0, then
the above sum is not zero either which means that for some (a1, . . . , an) we
have P (a1, . . . , an) 6= 0 which is often what we need. It might occur that it
is not easy to see what’s the coefficient of the term xp−11 . . . xp−1n in P . Then
there is one more idea which can help: modify P such a way that the obtained
polynomial Q has exactly the same max degree terms. Now if you can modify
P such a way that the sum ∑

(a1,...,an)∈Fnp

Q(a1, . . . , an)

has exactly one non-zero term, say Q(c1, . . . , cn) then we immediately know
that that the coefficient of xp−11 . . . xp−1n is Q(c1, . . . , cn), and so∑

(a1,...,an)∈Fnp

P (a1, . . . , an) = Q(c1, . . . , cn) 6= 0
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so there must be some (a1, . . . , an) for which P (a1, . . . , an) 6= 0. A very similar
plan will be carried out in the next section.

2. Quantitative nullstellensatz

Theorem 2.1. (Quantitative nullstellensatz) Let F be an arbitrary field. Let
P (x1, . . . , xn) ∈ F[x1, . . . , xn]. Let A1, . . . , An ⊆ F such that |Ai| = ti + 1, and
degP ≤ t1 + · · ·+ tn. Let us introduce the polynomials φi(x) =

∏
s∈Ai(x− s).

Then the coefficient of xt11 . . . xtnn is exactly∑
a1∈A1

· · ·
∑
an∈An

P (a1, . . . , an)

φ′1(a1) . . . φ
′
n(an)

,

where φ′i is the derivative of φi.

Proof. First, let us prove the statement for n = 1. Let P (x) =
∑t

k=0 ckx
k be

a polynomial of degree at most t (so it might occur that at = 0), and A be
a set of size t + 1. We will use Lagrange’s interpolation: let us consider the
polynomial

Q(x) =
∑
a∈A

P (a)

∏
a′∈A
a′ 6=a

(x− a′)∏
a′∈A
a′ 6=a

(a− a′)
.

Then Q(a) = P (a) for any a ∈ A, and both polynomials have degree at most
t, so P − Q is a polynomial of degree at most t vanishing at at least t + 1
points. So P −Q ≡ 0, i. e., P (x) = Q(x). By comparing the coefficient of xt
we get that

ct =
∑
a∈A

P (a)∏
a′∈A
a′ 6=a

(a− a′)
=
∑
a∈A

P (a)

φ′(a)
,

where φ(x) =
∏

a∈A(x − a). This is exactly the statement of the theorem for
n = 1.

Next we prove the theorem for arbitrary positive integer n. Note that it is
enough to prove the claim for monomials since if the claim is true for P1, P2,
then it is true for c1P1 + c2P2 since both the coefficient of xt11 . . . xtnn and the
expression ∑

a1∈A1

· · ·
∑
an∈An

P (a1, . . . , an)

φ′1(a1) . . . φ
′
n(an)

,

are linear in P . Now assume that Q(x1, . . . , xn) = xr11 . . . x
rn
n , then∑

a1∈A1

· · ·
∑
an∈An

Q(a1, . . . , an)

φ′1(a1) . . . φ
′
n(an)

=
∑
a1∈A1

· · ·
∑
an∈An

ar11 . . . a
rn
n

φ′1(a1) . . . φ
′
n(an)

=
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=

(∑
a1∈A1

ar11
φ′1(a1)

)
. . .

( ∑
an∈An

arnn
φ′n(an)

)
.

Assume that r1 + r2 + · · · + rn ≤ t1 + t2 + · · · + tn. If ri = ti for all i then
applying the case n = 1 separately to each term we get that the last expression
is 1 which is indeed the coefficient of xt11 . . . xtnn . If there is some i such that
ri 6= ti, then there must be some j such that rj < tj. Then by the case n = 1
we have ∑

aj∈Aj

a
rj
j

φ′j(aj)
= 0

since in the polynomial xrj , which is a polynomial of degree at most tj, the
coefficient of xtj is 0. So in this case the whole product is 0 which is exactly the
coefficient of xt11 . . . xtnn in Q(x1, . . . , xn) = xr11 . . . x

rn
n . Hence we are done. �

As an application we will consider Dyson’s conjecture and its q-analogue
generalization.

Theorem 2.2. (Dyson’s conjecture, proved independently by Gunson and Wil-
son.) The constant term of ∏

1≤i 6=j≤n

(
1− xi

xj

)ai
is equal to

(a1 + a2 + · · ·+ an)!

a1! . . . an!
.

We will actually prove a generalization of this theorem, most precisely a
q-analogue of this statement.

Theorem 2.3. (Andrews’s conjecture, proved by Zeilberger and Bressoud.)
Let q be fixed and let

(t)k = (1− t)(1− tq) . . . (1− tqk−1).

Then the constant term of ∏
1≤i<j≤n

(
xi
xj

)
ai

(
q
xj
xi

)
aj

is equal to
(q)a1+a2+···+an
(q)a1 . . . (q)an

.
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Before we start to prove Theorem 2.3 let us see how these theorems are
related to each other and to the combinatorial nullstellensatz.

Note that ∏
1≤i 6=j≤n

(
1− xi

xj

)ai
=

∏
1≤i<j≤n

(
1− xi

xj

)ai (
1− xj

xi

)aj
=

=
1

xm1
1 . . . xmnn

∏
1≤i<j≤n

(xj − xi)ai(xi − xj)aj ,

where mi =
∑n

k=1 ak−ai. Let’s introduce the notation σ =
∑n

k=1 ak. Then the
Dyson’s conjecture is equivalent with saying that the coefficient of xσ−a11 . . . xσ−ann

in the polynomial ∏
1≤i<j≤n

(xi − xj)ai(xj − xi)aj

is
(a1 + a2 + · · ·+ an)!

a1! . . . an!
.

On the other hand, ∏
1≤i<j≤n

(
xi
xj

)
ai

(
q
xj
xi

)
aj

=

=
∏

1≤i<j≤n

(
1− xi

xj

)(
1− q xi

xj

)
. . .

(
1− qai−1 xi

xj

)
·
(
1− qxj

xi

)
. . .

(
1− qaj xj

xi

)
=

=
1

xσ−a11 . . . xσ−ann

∏
1≤i<j≤n

(xj−xi)(xj−qxi) . . . (xj−qai−1xi)·(xi−qxj)(xi−q2xj) . . . (xi−qajxj).

Andrews’s conjecture is equivalent with saying that the coefficient of xσ−a11 . . . xσ−ann

in the polynomial∏
1≤i<j≤n

(xj−xi)(xj− qxi) . . . (xj− qai−1xi) · (xi− qxj)(xi− q2xj) . . . (xi− qajxj)

is
(q)a1+a2+···+an
(q)a1 . . . (q)an

=
(a1 + · · ·+ an)q!

(a1)q! . . . (an)q!

since

(q)m = (1− q)m(1 + q)(1 + q + q2) . . . (1 + q + q2 + · · ·+ qm−1).

So if we plug q = 1 in this statement we will get back Dyson’s conjecture.
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Let us start to prove Theorem 2.3. This proof is due to Z. Nagy and Gy.
Károlyi. Let us again consider the polynomial

F (x1, . . . , xn) =
∏

1≤i<j≤n

ai−1∏
t=0

(xj − qtxi)
aj∏
t=1

(xi − qtxj).

According to the quantitative nullstellensatz the coefficient of xσ−a11 . . . xσ−ann

in F (x1, . . . , xn) is exactly∑
r1∈A1

· · ·
∑
rn∈An

F (r1, . . . , rn)

φ′1(r1) . . . φ
′
n(rn)

,

where φ′i is the derivative of φi, where Ai are sets of size σ − ai + 1, and
φi(x) =

∏
r∈Ai(x− r). The trick is to choose the sets Ai carefully.

Lemma 2.4. Let Ai = {1, q, q2, . . . , qσ−ai}. Then F (r1, . . . , rn) = 0 for all
(r1, . . . , rn) ∈ A1 × A2 × · · · × An except if rk = qσk , where σk =

∑k−1
j=0 aj.

Remark 2.5. Note that σ1 = 0, σ2 = a1 and σn+1 = σ.

Proof. Let ri = qαi . Note that F (r1, . . . , rn) = 0 if for some i < j we have

0 ≤ αj − αi ≤ ai − 1

or
1 ≤ αi − αj ≤ aj.

This can be rephrased as follows: if F (r1, . . . , rn) 6= 0 then if αk ≥ αm then
αk − αm ≥ am and if m < k the inequality is strict.

So let us assume that for some permutation π of the numbers 1, 2, . . . , n we
have

απ(1) < απ(2) < · · · < απ(n).

Then

σ− aπ(n) =
n−1∑
j=1

aπ(j) ≤
n∑
j=2

(απ(j)−απ(j−1)) = απ(n)−απ(1) ≤ απ(n) ≤ σ− aπ(n).

There must be equality everywhere which means that (i) απ(1) = 0 (ii) aπ(j) =
απ(j) − απ(j−1) for all j = 2, . . . , n. Note that in the last inequality, equality
can only hold if π(j) > π(j − 1). So π is the identity permutation, and since
α1 = 0 and αj − αj−1 = aj−1, we have αj = σj. �

Hence the coefficient of xσ−a11 . . . xσ−ann in F (x1, . . . , xn) is exactly
F (qσ1 , . . . , qσn)

φ′1(q
σ1) . . . φ′n(q

σn)
,
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where φ′i is the derivative of φi, where φi(x) =
∏σ−ai

t=0 (x− qt). Now we take a
deep breath and start to count.

F (qσ1 , . . . , qσn) =
∏

1≤i<j≤n

(
ai−1∏
t=0

(qσj − qσi+t)
aj∏
t=1

(qσi − qσj+t)

)
=

= (−1)uqv
∏

1≤i<j≤n

(q)σj−σi
(q)σj−σi+1

·
(q)σj+1−σi

(q)σj−σi
= (−1)uqv

∏
1≤i<j≤n

(q)σj+1−σi

(q)σj−σi+1

,

where

u =
∑

1≤i<j≤n

ai =
n∑
i=1

(n− i)ai,

and

v =
∑

1≤i<j≤n

(
ai−1∑
t=0

(σi + t) +

aj∑
t=1

σi

)
=

∑
1≤i<j≤n

((
σi+1

2

)
−
(
σi
2

)
+ ajσi

)
=

=
n+1∑
i=2

(
σi
2

)
+

n∑
i=1

σi(σ − σi+1).

Now let’s consider the product ∏
1≤i<j≤n

(q)σj+1−σi

(q)σj−σi+1

.

Let’s study which indices does not cancel in the enumerator and the denom-
inator. The indices σi − σ1, where i goes from 3 to n + 1 only appear in the
enumerator, but not in the denominator. (Note that σ1 = 0, so σi − σ1 = σi,
while σn+1 = σ.) Also the indices σn+1 − σi, where i goes from 2 to n, only
appear in the enumerator. On the other hand, the terms σi+1 − σi, where i
goes from 2 to n − 1, only appear in the denominator. It is also true that
σi−σi = 0 only appears in the denominator, but (q)0 = 1 so it doesn’t matter.
Note that everything else cancels. Hence∏

1≤i<j≤n

(q)σj+1−σi

(q)σj−σi+1

=
n+1∏
i=3

(q)σi

n−1∏
i=2

(q)σn+1−σi

n−1∏
i=2

1

(q)σi+1−σi
.

Next let us consider φ′i(qσi).

φ′i(q
σi) =

σi−1∏
t=0

(qσi − qt)
σ−ai∏
t=σi+1

(qσi − qt) = (−1)σiqτi(q)σi(q)σ−σi+1
,
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where
τi =

(
σ

2

)
+ σi(σ − σi+1).

Hence u =
∑n

i=1(n−i)ai =
∑n

i=1 σi and v =
∑n

i=1

((
σ
2

)
+ σi(σ − σi+1)

)
. Hence

F (qσ1 , . . . , qσn)

φ′1(q
σ1) . . . φ′n(q

σn)
=

∏n+1
i=3 (q)σi

∏n−1
i=2 (q)σn+1−σi

∏n−1
i=2

1
(q)σi+1−σi∏n

i=1((q)σi(q)σ−σi+1
)

.

Now since σn+1 = σ then we have
F (qσ1 , . . . , qσn)

φ′1(q
σ1) . . . φ′n(q

σn)
=

(q)σ

(q)σ2(
∏n−1

i=2 (q)σi+1−σi)(q)σn+1−σn
=

=
(q)a1+a2+···+an

(q)a1
∏n−1

i=2 (q)ai(q)an
=

(q)a1+a2+···+an∏n
i=1(q)ai

We are done!


