
MATCHINGS IN VERTEX-TRANSITIVE BIPARTITE GRAPHS

PÉTER CSIKVÁRI

Abstract. A theorem of A. Schrijver asserts that a d–regular bipartite graph on
2n vertices has at least (

(d− 1)d−1

dd−2

)n

perfect matchings. L. Gurvits gave an extension of Schrijver’s theorem for match-
ings of density p. In this paper we give a stronger version of Gurvits’s theorem in
the case of vertex-transitive bipartite graphs. This stronger version in particular
implies that for every positive integer k, there exists a positive constant c(k) such
that if a d-regular vertex-transitive bipartite graph on 2n vertices contains a cycle
of length at most k, then it has at least(

(d− 1)d−1

dd−2
+ c(k)

)n

perfect matchings.
We also show that if G is d–regular vertex-transitive bipartite graph on 2n ver-

tices and mk(G) denotes the number of matchings of size k, and

M(G, t) = 1 +m1(G)t+m2(G)t2 + · · ·+mn(G)tn =

n∏
k=1

(1 + γk(G)t),

where γ1(G) ≤ · · · ≤ γn(G), then

γk(G) ≥ d2

4(d− 1)

k2

n2
,

and
mn−1(G)

mn(G)
≤ 2

d
n2.

The latter result improves on a previous bound of C. Kenyon, D. Randall and A.
Sinclair. There are examples of d–regular bipartite graphs for which these state-
ments fail to be true without the condition of vertex-transitivity.

We also show that if (Gi) is a Benjamini–Schramm convergent graph sequence
of vertex-transitive bipartite graphs, then

ln pm(Gi)

v(Gi)

is convergent, where pm(G) and v(G) denote the number of perfect matchings and
the number of vertices of G, respectively.

1. Introduction

This paper is motivated by two seemingly independent sets of results on perfect
matchings of finite graphs. The first set of results concerns with extremal values
of the number of (perfect) matchings, most notably results of A. Schrijver and L.
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Gurvits stand as cornerstones. The second set of results deals with a convergent
graph sequence (Gi), and the

lim
i→∞

ln pm(Gi)

v(Gi)
,

where pm(G) and v(G) denote the number of perfect matchings, and the number of
vertices of the graph G, respectively. Here the main question is that what kind of
conditions we have to impose to the graphs (Gi) and to the convergence in order to
ensure the existence of the above limit.

The remaining part of the Introduction is split into two parts according to the two
topics. We note here that we use standard terminology, but in case of a concept
undefined in the Introduction, the first paragraph of Section 2 might help.

1.1. Extremal problems about the number of matchings in bipartite graphs.
Here the starting point is the following theorem of A. Schrijver.

Theorem 1.1 (A. Schrijver [21], for d = 3 M. Voorhoeve [24]). Let G be a d–regular
bipartite graph on 2n vertices, and let pm(G) denote the number of perfect matchings
of G. Then

pm(G) ≥
(
(d− 1)d−1

dd−2

)n

.

Note that Schrijver and Valiant proved in [22] that the number

(d− 1)d−1

dd−2

cannot be improved by showing that for a random d–regular bipartite multigraph the
statement is asymptotically tight. In [1] the authors proved that actually large girth
graphs (not only random graphs) have asymptotically the same number of perfect
matchings: let g(H) denote the girth of a graph H, i. e., the length of the shortest
cycle in H. Then the following is true.

Theorem 1.2 ([1]). Let (Gi) be a sequence of d–regular bipartite graphs such that
g(Gi) → ∞, where g(Gi) denotes the girth of Gi. Then

lim
i→∞

ln pm(Gi)

v(Gi)
=

1

2
ln

(
(d− 1)d−1

dd−2

)
.

L. Gurvits gave an extension of Schrijver’s theorem for matchings of size k:

Theorem 1.3 (Gurvits [13]). Let G be an arbitrary d–regular bipartite graph on
v(G) = 2n vertices. Let mk(G) denote the number of k–matchings. Let p = k

n
. Then

lnmk(G)

v(G)
≥ 1

2

(
p ln

(
d

p

)
+ (d− p) ln

(
1− p

d

)
− 2(1− p) ln(1− p)

)
+ ov(G)(1).

It is worth introducing a notation for the function appearing in this inequality:

Gd(p) =
1

2

(
p ln

(
d

p

)
+ (d− p) ln

(
1− p

d

)
− 2(1− p) ln(1− p)

)
.

We note that Gurvits [13] gave an effective form of this result, but for our pur-
poses any ov(G)(1) term would suffice as we will use another form of this inequality
where this term can be vanished. We also mention that in the current form of this
inequality, it holds only for some special values of p. To achieve the aforementioned
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more convenient form of Gurvits’s inequality, we will introduce the so-called entropy
function λG(p) in Section 2.

For this function we have

λG(p) ≈
lnmk(G)

v(G)

for p = k/n and v(G) = 2n, and Gurvits’s theorem can be rewritten as

λG(p) ≥ Gd(p).

Moreover, we will also see that if G contains a perfect matching, then

λG(1) =
ln pm(G)

v(G)
.

In Section 3 we will prove the following extension of Gurvits’s theorem for vertex-
transitive bipartite graphs which also implies that the bound given in Theorem 1.1
can be improved for vertex-transitive bipartite graphs containing short cycles:

Theorem 1.4. Let G be a finite d–regular vertex-transitive bipartite graph, where
d ≥ 2. Furthermore, let the gap function g(p) be defined as

g(p) = λG(p)−Gd(p).

Then g(p) is monotone increasing function with g(0) = 0, in particular g(p) is non-
negative. Furthermore, if G contains an ℓ-cycle, then

g(p) ≥
∫ p

0

f(x)ℓ dx,

where
f(x) =

1

4d
min(x, (1− x)2).

1.2. The limit of perfect matching entropies. In statistical physics, the dimer
model is one of the most studied model. One of its main problems is the following.
Let L be an infinite lattice, and let (Gi) be a sequence of finite graphs exhausting L.
The problem is to find

lim
i→∞

ln pm(Gi)

v(Gi)
.

It turns out that the actual limit heavily depends on the exhaustion (and may not ex-
ist). The best known example if (Gi) are larger and larger boxes of the infinite square
grid Z2, then the celebrated result of Kasteleyn [17] and independently Temperley
and Fisher [23] asserts that the limit is G/π, where G is the Catalan constant. On
the other hand, it turns out that if one considers the sequence of Aztec diamonds for
(Gi), then the limit is (ln 2)/4 (see [7]). This reflects the fact that the boundary of a
graph can affect the number of perfect matchings. On the other hand, the situation
is not as bad as it seems for the first sight: in [5] H. Cohn, R. Kenyon and J. Propp
showed how one can take into account the boundaries of the graphs. Another way
to overcome the difficulty of the boundary is to consider doubly periodic graphs as
it was done in [19] by R. Kenyon, A. Okounkov and S. Sheffield. They considered
Z2–periodic bipartite planar graphs L, and Gi was the quotient of L by the action
of (iZ)2. In this setting they were able to determine the limit explicitly as a certain
integral. In both papers [5] and [19], the techniques heavily relied on the planarity
of the graph L.
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In this paper we present an abstract version of these results, where we are not
confined to planar graphs. Then we need to introduce a convergence concept replacing
the exhaustion of L. This concept is the Benjamini–Schramm convergence. With
some foresight we also define the limit objects of Benjamini–Schramm convergent
graph sequences, the so-called random rooted graphs.

Definition 1.5. Let L be a probability distribution on (infinite) rooted graphs; we
will call L a random rooted graph. For a finite rooted graph α and a positive integer
r, let P(L, α, r) be the probability that the r-ball centered at a random root vertex
chosen from the distribution L is isomorphic to α.

For a finite graph G, a finite rooted graph α and a positive integer r, let P(G,α, r) be
the probability that the r-ball centered at a uniform random vertex of G is isomorphic
to α.

We say that a sequence (Gn) of bounded degree graphs is Benjamini–Schramm
convergent if for all finite rooted graphs α and r > 0, the probabilities P(Gn, α, r)
converge. Furthermore, we say that (Gn) Benjamini–Schramm converges to L, if for
all positive integers r and finite rooted graphs α, P(Gn, α, r) → P(L, α, r).

Example 1.6. Let us consider a sequence of boxes in Zd where all sides converge to
infinity. This will be Benjamini–Schramm convergent graph sequence since for every
fixed r, we will pick a vertex which at least r-far from the boundary with probability
converging to 1. For all these vertices we will see the same neighborhood. This
also shows that we can impose arbitrary boundary condition, for instance periodic
boundary condition means that we consider the sequence of toroidal boxes. We
can also consider Aztec diamonds in case of Z2. Boxes and toroidal boxes will be
Benjamini–Schramm convergent even together, and converges to a distribution which
is a rooted Zd with probability 1.

Example 1.7. Let (Gn) be a sequence of d–regular graphs such that g(Gn) → ∞,
where g(H) denotes the girth of a graph H, i. e., the length of the shortest cycle in
H. Then (Gn) Benjamini–Schramm converges to the rooted infinite d–regular tree
Td.

Now we can present our result. Later we will prove a slightly stronger variant of
the following theorem.

Theorem 1.8. Let (Gi) be a Benjamini–Schramm convergent sequence of vertex-
transitive bipartite d–regular graphs. Then the sequence

ln pm(Gi)

v(Gi)

is convergent.

Note that in this theorem vertex-transitivity plays the role of the "nice boundary
condition". We also note that in case of vertex-transitive graphs, the Benjamini–
Schramm convergence simply means that we know larger and larger neighbor of the
root of a rooted infinite graph. We also would like to point out that a slightly
stronger version of Theorem 1.2 says that if (Gi) is a sequence of bipartite graphs
Benjamini–Schramm convergent to the infinite d–regular tree, then

lim
i→∞

ln pm(Gi)

v(Gi)
=

1

2
ln

(
(d− 1)d−1

dd−2

)
.
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So in this case we do not need the vertex-transitivity of the graphs. On the other
hand, in [1] the authors gave a sequence of d–regular bipartite graphs which are
Benjamini–Schramm convergent, still the

lim
i→∞

ln pm(Gi)

v(Gi)

does not exist.

It will turn out that the proof of Theorem 1.8 heavily relies on certain estimate
of the smallest zeros of the so-called matching polynomial. This result might be of
independent interest of its own.

Let G be a graph on 2n vertices, then the matching generating function of G is
defined as

M(G, t) =
n∑

k=0

mk(G)tk =
n∏

k=1

(1 + γk(G)t),

where γ1(G) ≤ γ2(G) ≤ · · · ≤ γn(G). We will prove the following lower bounds for
the numbers γk(G).

Theorem 1.9. Let G be a vertex-transitive bipartite d–regular graph on 2n vertices.
Then

γk(G) ≥ d2

4(d− 1)

k2

n2
.

This result implies that for a d–regular vertex-transitive bipartite graph on 2n
vertices we have

mn−1(G)

mn(G)
=

n∑
k=1

1

γk(G)
≤

n∑
k=1

4(d− 1)

d2
n2

k2
≤ 2π2

3

(d− 1)

d2
n2.

On the other hand, one can prove a bit better result:

Theorem 1.10. Let G be a d–regular vertex-transitive bipartite graph on 2n vertices.
Then

mn−1(G)

mn(G)
≤ 2

d
n2.

Furthermore, for every k ≤ n− 1 we have
mk+1(G)

mk(G)
≥ d(n− k − 1)2

(k + 1)(n− k+1
d
)
.

The quantity mn−1(G)
mn(G)

plays an important role in the analysis of the algorithm of
Jerrum and Sinclair [15] estimating the number of perfect matchings of a graph. Let
us mention that the best previous bound on mn−1(G)

mn(G)
of vertex-transitive graphs is due

to C. Kenyon, D. Randall, A. Sinclair1 [18].

Theorem 1.11 (C. Kenyon, D. Randall, A. Sinclair, (M. Jerrum) [18]). Let G be a
d–regular vertex-transitive graph on 2n vertices. If G is bipartite, then

mn−1(G)

mn(G)
≤ n2.

1Actually, in the acknowledgment of their paper the authors reveal that this result is due to M.
Jerrum.
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If G is not bipartite, then we still have

mn−1(G)

mn(G)
≤ 4n3.

Surprisingly, Theorem 1.9 and 1.10 fail spectacularly without the vertex-transitivity
condition. In Section 5 we will show that there exist constants cd < 1 and Cd > 1
for which one can construct a graph G with v(G) = 2n vertices for arbitrarily large
n such that

γ1(G) < cnd ,

and
mn−1(G)

mn(G)
> Cn

d .

It was known that mn−1(G)
mn(G)

can be exponentially large, for an explicit construction
see for instance [16]. Our construction has the advantage that we show that it can
be exponentially large even if G is regular (and so not only mn−1(G) is exponentially
large, but mn(G) is exponentially large too2). Our construction relies on the one
given in [1], which used to show that

lim
i→∞

ln pm(Gi)

v(Gi)

may not exist for Benjamini–Schramm convergent d–regular bipartite graphs.

The rest of the paper is organized as follows. In Section 2 we will introduce many
important concepts, most notably the entropy function λG(p), and we establish a few
fundamental properties of them. In Section 3 we prove Theorem 1.4. In Section 4 we
will prove Theorem 1.9 and 1.10. In Section 5 we show that vertex-transitivity was
indeed crucial in all previous theorems by constructing d–regular graphs violating the
claims of these theorems. Finally, in Section 6 we will prove Theorem 1.8.

2. Preliminaries and basic notions

Throughout the paper, G denotes a finite graph with vertex set V (G) and edge
set E(G). The number of vertices is denoted by v(G). The degree of a vertex is
the number of its neighbors. A graph is called d–regular if every vertex has degree
exactly d. The graph G−S denotes the graph obtained from G by erasing the vertex
set S together with all edges incident to S. If S = {v} then we simply write G − v
instead of G−{v}. If e is an edge then G−e denotes the graph with vertex set V (G)
and edge set E(G) \ {e}. A path P is a sequence of vertices v1, v2, . . . , vk such that
vi ̸= vj if i ̸= j and (vi, vi+1) ∈ E(G) for i = 1, . . . , k − 1. A cycle C is a sequence of
vertices v1, v2, . . . , vk such that vi ̸= vj if i ̸= j and (vi, vi+1) ∈ E(G) for i = 1, . . . , k,
where vk+1 = v1. The length of the cycle is k in this case. A k–matching is a set of
edges {e1, . . . , ek} such that for any i and j, the vertex set of ei and ej are disjoint, in
other words, e1, . . . , ek cover 2k vertices together. A perfect matching is a matching
which covers every vertices.

2In the example of [16], mn(G) = 1.
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Let G = (V,E) be a finite graph on v(G) = 2n vertices. Let mk(G) be the number
of k–matchings (m0(G) = 1). Let t be an arbitrary non-negative real number, and

M(G, t) =
n∑

k=0

mk(G)tk,

and

µ(G, x) =
n∑

k=0

(−1)kmk(G)xv(G)−2k.

We call M(G, t) the matching generating function, µ(G, x) the matching polynomial.
Clearly, they encode the same information. If

M(G, t) =
n∑

k=0

mk(G)tk =
n∏

i=1

(1 + γi(G)t),

then (±
√

γi(G))ni=1 are the zeros of µ(G, x). The following fundamental theorem of
Heilmann and Lieb [14] is crucial in all our proofs.

Theorem 2.1 (Heilmann and Lieb [14]). The zeros of the matching polynomial
µ(G, x) are real, and if the largest degree D is greater than 1, then all zeros lie
in the interval [−2

√
D − 1, 2

√
D − 1].

In other words, γi(G)’s are real and satisfy the inequality 0 ≤ γi(G) ≤ 4(D − 1).

Let us define

p(G, t) =
t ·M ′(G, t)

n ·M(G, t)
,

and

F (G, t) =
lnM(G, t)

v(G)
− 1

2
p(G, t) ln(t).

We will call p(G, t) the density function. Note that there is a natural interpretation of
p(G, t). Assume that we choose a random matching M with probability proportional
to t|M |. Then the expected number of vertices covered by a random matching is
p(G, t) · v(G).
Let

p∗(G) =
2ν(G)

v(G)
,

where ν(G) denotes the number of edges in the largest matching. If G contains a
perfect matching, then clearly p∗ = 1. The function p = p(G, t) is a strictly monotone
increasing function which maps [0,∞) to [0, p∗), where p∗ = p∗(G). Hence we can
consider its inverse function t(p) = t(G, p) on the interval [0, p∗). Finally, let

λG(p) = F (G, t(p))

if p < p∗, and λG(p) = 0 if p > p∗. Note that we have not defined λG(p
∗) yet. We

simply define it as a limit:
λG(p

∗) = lim
p↗p∗

λG(p).

This limit exists, see part (c) of Proposition 2.2. Later we will extend the definition
of p(G, t), F (G, t) and λG(p) to random rooted graphs L.
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The intuitive meaning of λG(p) is the following. Assume that we want to count
the number of matchings covering p fraction of the vertices. Let us assume that it
makes sense: p = 2k

v(G)
= k

n
, and so we wish to count mk(G). Then

λG(p) ≈
lnmk(G)

v(G)
.

The more precise formulation of this statement will be given in Proposition 2.2. The
proof of this proposition is given in the paper [2].

Proposition 2.2. Let G be a finite graph.
(a) Let rG be r disjoint copies of G. Then

λG(p) = λrG(p).

(b) If p < p∗, then
d

dp
λG(p) = −1

2
ln t(p).

(c) The limit
lim
p↗p∗

λG(p)

exists.
(d) Let k ≤ ν(G) and p = 2k

v(G)
= k

n
. Then∣∣∣∣λG(p)−
lnmk(G)

v(G)

∣∣∣∣ ≤ ln v(G)

v(G)
.

(e) Let us define
λG(p

∗) = lim
p↗p∗

λG(p).

Let k = ν(G), then for p∗ = 2k
v(G)

we have

λG(p
∗) =

lnmk(G)

v(G)
.

In particular, if G contains a perfect matching, then

λG(1) =
ln pm(G)

v(G)
.

(f) If for some function f(p) we have

λG(p) ≥ f(p) + ov(G)(1)

then
λG(p) ≥ f(p).

Finally we introduce the concept of matching measure which will be extremely
useful when we study convergent sequence of graphs. The reason why we introduce
it now is that it will be convenient to give the consequence of Theorem 1.9 on the
matching measure together with the proof already in Section 4.
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Definition 2.3. The matching measure of a finite graph is defined as

ρG =
1

v(G)

∑
zi: µ(G,zi)=0

δ(zi),

where δ(s) is the Dirac-delta measure on s, and we take every zi into account with
its multiplicity.

2.1. Inequalities for t(G, p) and p(G, t). In this part we gather a few facts about
the functions t(G, p) and p(G, t). First, we gather a few facts about M(G, t).

Lemma 2.4. Let G be an arbitrary finite graph. Then
(a) ∑

u∈V (G)

M(G− u, t) = v(G) ·M(G, t)− 2t ·M ′(G, t)

(b) ∑
(u,v)∈E(G)

M(G− {u, v}, t) = M ′(G, t).

(c)

M(G, t)M(G− {u, v}, t)−M(G− u, t)M(G− v, t) = −
∑

P∈Pu,v

(−t)|P |−1M(G \ P, t)2,

where Pu,v is the set of paths connecting the vertices u and v.

Part (a) and (b) are simple double counting. Part (a) appears in the literature (see
for instance [11]) in the form

µ′(G, x) =
∑

u∈V (G)

µ(G− u, x).

Part (c) is due to Heilmann and Lieb [14] (see also [11]) in the form

µ(G− u, x)µ(G− v, x)− µ(G, x)µ(G− {u, v}, x) =
∑

P∈Pu,v

µ(G− P, x)2.

If G is a bipartite graph, then all terms of the right hand side of part (c) have the
same signs. This is the key observation why the proofs of Theorem 1.4, Theorem 1.8
and Theorem 1.9 will work. If G is a bipartite graph and (u, v) ∈ E(G), then
there is a trivial term on the right hand side of part (c), namely tM(G− {u, v}, t)2.
Furthermore, in this case all |P | are even, and we can rewrite part (c) as follows.

M(G, t)M(G− {u, v}, t)−M(G− u, t)M(G− v, t)− tM(G− {u, v}, t)2 =

=
∑

P∈Pu,v
P ̸=(u,v)

t|P |−1M(G \ P, t)2.

Proposition 2.5. (a) Let G be a finite graph with a perfect matching. The function
t(1 − p(G, t)) (or t(G, p)(1 − p)) is monotone increasing in t (or p) and is bounded
by a constant C(G) depending on the graph G.
(b) If G is a d–regular finite graph, then

p(G, t) ≤ d · t
1 + d · t

≤ d · t.
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(c) If G is a vertex-transitive d–regular bipartite graph, then

t(G, p) ≤ p

d

(
1− p

d

)
· 1

(1− p)2
≤ d− 1

d2
· 1

(1− p)2
.

In fact, with the notation t = t(G, p) we have

p

d

(
1− p

d

)
− t(1− p)2 ≥ 2

d · v(G)

∑
(u,v)∈E(G)

 ∑
P∈Pu,v
P ̸=(u,v)

t|P |M(G \ P, t)2

M(G, t)2

 .

Equality holds if G is not only vertex-transitive, but also edge-transitive.

Proof. (a) Let us write M(G, t) into the form

M(G, t) =

v(G)/2∏
i=1

(1 + γit),

where γi are positive numbers according to the Heilmann-Lieb theorem. Then

p(G, t) =
2

v(G)

v(G)/2∑
i=1

γit

1 + γit
.

Hence

t(1− p(G, t)) =
2

v(G)

v(G)/2∑
i=1

t

1 + γit
.

Since all terms of the sum are monotone increasing function of t, we see that t(1 −
p(G, t)) is monotone increasing. Furthermore,

t(1− p(G, t)) =
2

v(G)

v(G)/2∑
i=1

t

1 + γit
≤ 2

v(G)

v(G)/2∑
i=1

1

γi
= C(G).

(b) We offer two proofs for this inequality. The first one is an analytic proof, while
the second one is combinatorial. We give the proof when v(G) = 2n, the case v(G) =
2n+ 1 only requires a very slight modification.

Let us apply the harmonic-arithmetic mean inequality to the numbers 1 + γit:
n

1
1+γ1t

+ · · ·+ 1
1+γ1t

≤ (1 + γ1t) + · · ·+ (1 + γnt)

n
= 1 + d · t.

We used the fact that
∑

γi = m1(G) = nd. (In case of v(G) = 2n+ 1, we can apply
the harmonic-arithmetic mean inequality to the following numbers
(1+ γ1t, 1+ γ1t, 1+ γ2t, 1+ γ2t, . . . , 1+ γnt, 1+ γnt, 1). Note that in both case, it can
occur that some γi are 0.) Thus

1

n

n∑
i=1

1

1 + γit
≥ 1

1 + d · t
.

Hence

p(G, t) =
1

n

n∑
i=1

γit

1 + γit
= 1− 1

n

n∑
i=1

1

1 + γit
≤ 1− 1

1 + d · t
=

d · t
1 + d · t

.
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The combinatorial proof is the following. To prove

p(G, t) =
tM ′(G, t)

n ·M(G, t)
=

∑
k kmkt

k

n
∑

k mktk
≤ d · t

1 + d · t
it would be enough to prove that for every k we have

dkmk + (k + 1)mk+1 ≤ dnmk.

Indeed, compare the coefficients of tk+1 after multiplying by (1 + d · t) · n ·M(G, t).
In other words, it is enough to prove that

(k + 1)mk+1 ≤ d(n− k)mk.

This is indeed true: let us count the number of pairs (M, e), where M is a matching of
size k, and e is an edge independent of M , in other words, M ∪e is a matching of size
k+1. Then the number of these pairs is clearly (k+1)mk+1. On the other hand, for a
given M , we can choose e in E(G\V (M)) ways. Since G\V (M) is a vertex set of size
2(n− k), the number of edges is at most d(n− k). Hence (k+1)mk+1 ≤ d(n− k)mk.

(c) Let us introduce the notation q = p/d. For a moment let us assume that the
graph G is not only vertex-transitive, but also edge-transitive, so for arbitrary edges
(u, v), (u1, v1) ∈ E(G) we have M(G− {u, v}, t) = M(G− {u1, v1}, t). Then

q =
p

d
=

1

d · n
· tM

′(G, t)

M(G, t)
=

t ·M(G− {u, v}, t)
M(G, t)

for any edge (u, v) ∈ E(G) by part (b) of Lemma 2.4. Furthermore,

1− d · q = 1− p =
n ·M(G, t)− t ·M ′(G, t)

nM(G, t)
=

M(G− u, t)

M(G, t)

for a vertex u ∈ V (G) by part (a) of Lemma 2.4 using the vertex transitivity. Hence

r = q(1− q)− t(1− d · q)2 =

=
t(M(G, t)M(G− {u, v}, t)− t ·M(G− {u, v}, t)2 −M(G− u, t)M(G− v, t))

M(G, t)2
=

=
t

M(G, t)2

 ∑
P∈Pu,v
P ̸=(u,v)

t|P |−1M(G \ P, t)2

 ≥ 0.

We can eliminate the edge-transitivity from the argument (but still keeping the
vertex-transitivity) if we average the above identity for all edges and we use a Cauchy-
Schwarz inequality for the numbers M(G−{u, v}, t) ((u, v) ∈ E(G)). (The following
computation is tedious, but contains no idea.)

0 ≤ 1

nd

∑
(u,v)∈E(G)

t

M(G, t)2

 ∑
P∈Pu,v
P ̸=(u,v)

t|P |−1M(G \ P, t)2

 =

=
1

nd

t

M(G, t)2

∑
(u,v)∈E(G)

(
M(G, t)M(G− {u, v}, t)− t ·M(G− {u, v}, t)2

)
−

− 1

nd

t

M(G, t)2

∑
(u,v)∈E(G)

M(G− u, t)M(G− v, t) =
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=
1

nd

t

M(G, t)2
M(G, t)M ′(G, t)− t2

M(G, t)2
1

nd

∑
(u,v)∈E(G)

M(G− {u, v}, t)2−

− t

M(G, t)2
M(G− u, t)2 ≤

≤ 1

nd

tM ′(G, t)

M(G, t)
− t2

M(G, t)2

(
M ′(G, t)

nd

)2

− t

n2 ·M(G, t)2
(n ·M(G, t)−t ·M ′(G, t))2 =

= q(1− q)− t(1− d · q)2 = r.

�

2.2. Vertex-transitivity. By vertex-transitivity we always mean that for every ver-
tex u and v, there exists an automorphism ϕ of the graph G such that ϕ(u) = v. In
this paper we only use the vertex-transitivity to ensure that

M(G− u, t) = M(G− v, t)

for every u and v. On the other hand, for bipartite graphs there is a natural variant of
vertex-transitivity when we only require that the automorphism group of the graph
acts transitively on the color classes separately. Apriori this would only give that

M(G− u, t) = M(G− v, t)

holds true when u and v belong to the same color class of the bipartite graph. It
turns out that for balanced bipartite graphs, this implies that

M(G− u, t) = M(G− v, t)

for every u and v. As a corollary, this weaker variant of the vertex-transitivity can
be used everywhere in this paper for d–regular bipartite graphs.

Lemma 2.6. Let G = (A,B,E) be a balanced bipartite graph, i. e., |A| = |B|. Then∑
u∈A

M(G− u, t) =
∑
v∈B

M(G− v, t).

Proof. Let M be the set of matchings, and for M ∈ M, let |M | denote the number
of edges in M . Then∑
u∈A

M(G− u, t) =
∑
M∈M

(|A| − |M |)t|M | =
∑
M∈M

(|B| − |M |)t|M | =
∑
v∈B

M(G− v, t).

�

Since every d–regular bipartite graph is balanced, the following statement is an
immediate corollary.

Corollary 2.7. Let G = (A,B,E) be a d–regular bipartite graph such that for every
u, u′ ∈ A and v, v′ ∈ B there are automorphisms ϕ1, ϕ2 of the graph G such that
ϕ1(u) = u′ and ϕ2(v) = v′. Then for every u, v ∈ G we have

M(G− u, t) = M(G− v, t).
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3. Federbush–expansion and Gurvits’s theorem

In this part we prove Theorem 1.4. As we mentioned in the Introduction, in [13] L.
Gurvits proved Friedland’s asymptotic lower matching conjecture appearing in [10],
which says that if G is a d–regular bipartite graph on v(G) vertices, then

lnmk(G)

v(G)
≥ Gd(p) + ov(G)(1),

where p = 2k/v(G). Recall that

Gd(p) =
1

2

(
p ln

(
d

p

)
+ (d− p) ln

(
1− p

d

)
− 2(1− p) ln(1− p)

)
.

We also noted in the Introduction that there are two inconvenient things in this
statement. Namely, the term ov(G)(1), and that p is defined only for special values.
It turns out that the two problems are in fact one. If we choose the activity t such
that

2k/v(G) = p = p(G, t),

then
lnmk(G)

v(G)
≈ λG(p)

by part (d) of Proposition 2.2. Hence by part (d) and (f) of Proposition 2.2, one can
rewrite Gurvits’s theorem as follows. (For more detailed explanation, see Section 3
of [4].)

Theorem 3.1 (Gurvits [13] (not in this form)). Let G be an arbitrary finite d–regular
bipartite graph. Then

λG(p) ≥ Gd(p).

Federbush and his coauthors suggested a related idea developed in a series of pa-
pers (see for instance [3, 8, 9]), namely they suggested to investigate the following
expansion:

λG(p) =
1

2

(
p ln

(
d

p

)
− 2(1− p) ln(1− p)− p+ d

∞∑
k=2

ak
k(k − 1)

(p
d

)k)
.

Comparing Gurvits’s theorem and the Federbush-expansion, we see that they differ
slightly. Using the Taylor-expansion

(1− t) · ln(1− t) = −t+
∞∑
k=2

1

k(k − 1)
tk

we can see that the following identity holds:

p ln

(
d

p

)
− 2(1− p) ln(1− p) + (d− p) ln

(
1− p

d

)
=

= p ln

(
d

p

)
− 2(1− p) ln(1− p)− p+ d

∞∑
k=2

1

k(k − 1)

(p
d

)k
.

This suggests that maybe it would be better to consider the following modified
Federbush-expansion:

λG(p) =
1

2

(
p ln

(
d

p

)
+ (d− p) ln

(
1− p

d

)
− 2(1− p) ln(1− p) + d

∞∑
k=2

bk
k(k − 1)

(p
d

)k)
.
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Therefore bk = ak − 1.
It is known that for the d–regular infinite tree Td, we have bk ≡ 0, in other words

λTd
(p) = Gd(p)

It is also known that if g is the length of the shortest non-trivial cycle, then b2 = b3 =
· · · = bg−1 = 0. Butera, Federbush and Pernici [3] computed the first few elements
of ak for various lattices3 including Zd for small d. For instance, for the lattice Z2

they obtained that a2 = 1, a3 = 1, a4 = 7, a5 = 41, a6 = 181, a7 = 757, .... (In other
words, b2 = 0, b3 = 0, b4 = 6, b5 = 40, b6 = 180, b7 = 756, . . . .) They conjectured that
all ak are positive for Zd, and it might be true for more general bipartite lattices.
We note that the corresponding statement is not true for the 4-cycle and for the
3–regular complete bipartite graph on 6 vertices. This conjecture would imply that
if we consider the function gd(p) = λZd(p) − G2d(p) then the k-th derivative g

(k)
d (p)

are non-negative for all k. We were not able to settle this conjecture even for Z2,
still it is a very inspiring one. We will show that at least the first derivative is indeed
non-negative and it is true in a more general setting.

We will prove Theorem 1.4, for sake of convenience we repeat the statement.

Theorem 1.4. Let G be a finite d–regular vertex-transitive bipartite graph, where
d ≥ 2. Furthermore, let the gap function g(p) be defined as

g(p) = λG(p)−Gd(p).

Then g(p) is monotone increasing function with g(0) = 0, in particular g(p) is non-
negative. Furthermore, if G contains an ℓ-cycle, then

g(p) ≥
∫ p

0

f(x)ℓ dx,

where

f(x) =
1

4d
min(x, (1− x)2).

Remark 3.2. A bipartite d–regular graph always contains a perfect matching, so
p∗ = 1 in this case. We also mention that a connected vertex-transitive graph on
even number of vertices always contains a perfect matching, while if it has an odd
number of vertices then it contains a matching which avoids exactly one vertex.

Proof of Theorem 1.4. As before we use the notation n = v(G)/2.
The claim g(0) = 0 is trivial, so first we only need to prove that g′(p) ≥ 0. Let us

differentiate the function λG(p) with respect to p. By part (b) of Proposition 2.2 we
have

dλG(p)

dp
= −1

2
ln(t).

On the other hand, by differentiating

λG(p) =
1

2

(
p ln

(
d

p

)
+ (d− p) ln

(
1− p

d

)
− 2(1− p) ln(1− p)

)
+ g(p)

3The functions λG(p) and p(G, t) can be extended to infinite lattices too as we will see in Section 6.
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with respect to p, we get that

−1

2
ln(t) =

dλG(p)

dp
=

1

2

(
ln(d)− ln(p)− ln

(
1− p

d

)
+ 2 ln(1− p)

)
+ g′(p).

Hence

g′(p) =
1

2
ln

(
1

t
· p
d

(
1− p

d

) 1

(1− p)2

)
.

Now we immediately see that g′(p) ≥ 0 by part (c) of Proposition 2.5.
In the next step we prove that short cycles increase the function g(p). As a first

step we refine our lower bound for g′(p). It will be a bit more convenient to carry
out the computation if we introduce the notation q = p

d
. (Note that it is suggested

by the Federbush–expansion too.) Then

g′(p) =
1

2
ln

(
q(1− q)

t · (1− d · q)2

)
.

It is also worth introducing the notation

r = q(1− q)− t(1− d · q)2.
Since then

g′(p) =
1

2
ln

1

1− r
q(1−q)

≥ 1

2

r

q(1− q)
>

1

2
d · r.

We have seen that r ≥ 0 as it is exactly the claim of part (c) of Proposition 2.5:

r =
p

d

(
1− p

d

)
− t(1− p)2 ≥ 2

d · v(G)

∑
(u,v)∈E(G)

 ∑
P∈Pu,v
P ̸=(u,v)

t|P |M(G \ P, t)2

M(G, t)2

 ≥ 0.

Now we will show that if G contains a cycle of length ℓ then

g′(p) ≥ f(p)ℓ,

where
f(x) =

1

4d
min(x, (1− x)2).

This will follow from the following inequality:

M(G \ S, t)(1 + d · t)|S| ≥ M(G, t).

This inequality holds true since every matching of G can be obtained from a matching
of G \ S plus at most one-one edges incident to every element of S. Hence

M(G \ S, t)
M(G, t)

≥ 1

(1 + d · t)|S|
.

We will use it to S = P , where P is a "short" cycle minus an edge. Assume that the
length of the shortest cycle is ℓ. We will call a cycle of size ℓ a short cycle. Note that
every vertex is contained in a short cycle by the vertex-transitivity. This means that
at least 2/d fraction of the edges are contained in a short cycle, since a cycle goes
through two edges at a vertex. Hence

g′(p) ≥ 1

2
d · r ≥ 1

2
d · 2

d

tℓ

(1 + d · t)2ℓ
=

(
t

(1 + d · t)2

)ℓ

.
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Now we bound the function t/(1+ d · t)2 according to d · t ≤ 1 or d · t > 1. If d · t ≤ 1,
then we use part (b) of Proposition 2.5:

t

(1 + d · t)2
≥ t

4
≥ p

4d
.

If d · t > 1, then we use part (c) of Proposition 2.5:

t

(1 + d · t)2
≥ t

(d · t+ d · t)2
=

1

4d2
· 1
t
≥ 1

4d2
· d2

d− 1
(1− p)2 ≥ 1

4d
(1− p)2.

Hence
t

(1 + d · t)2
≥ 1

4d
min(p, (1− p)2).

Therefore
g(p) ≥

∫ p

0

f(x)ℓ dx.

�
Remark 3.3. Naturally, the statement of Theorem 1.4 remains true for those infinite
lattices L which can be obtained as a limit of vertex-transitive bipartite graphs. This
is a trivial consequence of Theorem 6.2.

Remark 3.4. In particular applications, for instance in case of Z3, it is not really
worth using the lower bound

g(p) ≥
∫ p

0

f(x)ℓ dx.

The reason is that one can compute the function λL(p) quite precisely if p is bounded
away from 1. This can be done exactly the same way as the monomer-dimer entropy
was computed in [2]. If p is close to 1, then it is not really easy to compute λL(p). This
is due to the fact that the function ln |x| is not easy to approximate by polynomials.
Still it is useful to compute g(p) with high precision where we can do it, and then
use it as a lower bound for g(1). This way we can obtain a lower bound for λL(1).
For instance, one can prove with this strategy that

λZ3(1) ≥ 1

2
ln

(
55

64

)
+

1

1000
≈ 0.44107.

(The 1
1000

is not the best lower bound one can achieve with this method, but we did
not try to optimize this argument. There was no known rigorous improvement on
1
2
ln
(

55

64

)
in the literature before.)

4. Lower bounds on the zeros of the matching polynomial of a
vertex-transitive graph

In this part we prove Theorem 1.9 and 1.10. First we prove Theorem 1.9. For sake
of convenience we repeat the statement of the theorem with an extra claim showing
its connection with the matching measure.

Theorem 1.9. Let G be a vertex-transitive bipartite d–regular graph on 2n vertices.
Then

γk(G) ≥ d2

4(d− 1)

k2

n2
.
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Consequently, for the matching measure ρG we have

ρG([−s, s]) ≤ 2
√
d− 1

d
s

for all s ∈ R+.

Proof. Recall that for a fix t, we have defined

p = p(G, t) =
t ·M ′(G, t)

n ·M(G, t)
,

and in part (c) of Proposition 2.5 we have proved that for a vertex-transitive d–regular
bipartite graph we have

t = t(G, p) ≤ p

d

(
1− p

d

)
· 1

(1− p)2
≤ d− 1

d2
· 1

(1− p)2
.

We will use it in the form
t(1− p)2 ≤ d− 1

d2
.

Note that

p(G, t) =
1

n

n∑
i=1

γit

1 + γit
.

Hence

t(1− p)2 = t

(
1

n

n∑
i=1

1

1 + γit

)2

≥ t

(
1

n

k∑
i=1

1

1 + γit

)2

.

Now let t = 1
γk

, then

d− 1

d2
≥ t(1− p)2 ≥ 1

γk

(
1

n

k∑
i=1

1

1 + γi
γk

)2

≥ 1

γk

(
k

2n

)2

.

In other words,

γk(G) ≥ d2

4(d− 1)

k2

n2
.

The second claim follows since

ρG([−s, s]) =
1

2n
|{k | ± √

γk ∈ [−s, s]}| = 1

n
|{k | γk ≤ s2}|.

Since
d2

4(d− 1)

k2

n2
≤ γk(G) ≤ s2

we have
k

n
≤ 2

√
d− 1

d
s.

�
Finally, we prove Theorem 1.10. For the convenience of the Reader, we repeat the

statement.

Theorem 1.10. Let G be a d–regular vertex-transitive bipartite graph on 2n vertices.
Then

mn−1(G)

mn(G)
≤ 2

d
n2.
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Furthermore, for every k ≤ n− 1 we have
mk+1(G)

mk(G)
≥ d(n− k − 1)2

(k + 1)(n− k+1
d
)
.

Proof. To prove the first claim we use the identity of part (c) of Lemma 2.4 once
again:

M(G, t)M(G− {u, v}, t)−M(G− u, t)M(G− v, t) = −
∑

P∈Pu,v

(−t)|P |−1M(G \ P, t)2.

We apply it for (u, v) ∈ E(G) again. Then all coeffcients on the right hand side are
non-negative. Let us consider the coefficient of t2n−2:

mn(G)·mn−2(G−{u, v})+mn−1(G)·mn−1(G−{u, v})−mn−1(G−u)·mn−1(G−v) ≥ 0.

Let us use the identity of part (a) of Lemma 2.4 together with the fact that G is
vertex-transitive:

mn−1(G− u) = mn−1(G− v) =
1

n
mn−1(G).

Hence

mn(G) ·mn−2(G− {u, v}) +mn−1(G) ·mn−1(G− {u, v}) ≥
(
1

n
mn−1(G)

)2

.

Now let us sum this inequality for all (u, v) ∈ E(G) using the fact that∑
(u,v)∈E(G)

mn−2(G−{u, v}) = (n−1)mn−1(G) and
∑

(u,v)∈E(G)

mn−1(G−{u, v}) = n·mn(G).

Hence we get that

mn(G) · (n− 1)mn−1(G) +mn−1(G) · n ·mn(G) ≥ nd ·
(
1

n
mn−1(G)

)2

.

Then
n(2n− 1)

d
≥ mn−1(G)

mn(G)
.

To prove the second statement, we use a different strategy. Let t = t(G, k+1
n
). Then

p = p(G, t) = k+1
n

. Let us consider the probability distribution (a0, a1, . . . , an) and
random variable X, where

Pr(X = i) = ai =
mi(G)ti

M(G, t)
.

Then
EX = np(G, t) = k + 1.

Then the probability distribution (a0, a1, . . . , an) has mean µ = k + 1. By the
Heilmann–Lieb theorem,

∑
ajx

j has only real zeros. Then it is known that it is
a distribution of the number of successes in independent trials. Indeed, let us con-
sider the indicator variable Ij that takes the value 1 with probability pj and 0 with
probability 1− pj, where pj is defined as follows. Let

M(G, t) =
n∏

i=1

(1 + γit),
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then let
pj =

γjt

1 + γjt
.

Then
n∑

j=0

Pr(I1+ · · ·+ In = j)xj =
n∏

j=1

((1− pj)+ pjx) =
n∏

j=1

(
1 + γjtx

1 + γjt

)
=

n∑
j=0

mj(G)tj

M(G, t)
xj.

Hence
Pr(I1 + · · ·+ In = j) = aj.

Then by Darroch’s rule [6], the largest element of the sequence (a0, a1, . . . , an) is ak+1

since EX = k + 1. In partiucular, ak+1 ≥ ak, thus

mk(G)tk

M(G, t)
≤ mk+1(G)tk+1

M(G, t)
.

Hence we have
mk+1(G)

mk(G)
≥ 1

t
.

Now let us use that
p

d

(
1− p

d

)
− t(1− p)2 ≥ 0.

Then
1

t
≥ (1− p)2

p
d

(
1− p

d

) .
Hence

mk+1(G)

mk(G)
≥ (1− p)2

p
d

(
1− p

d

) ,
where p = (k + 1)/n. This is exactly the statement of the theorem. �
Remark 4.1. I. Wanless studied a certain inequality arising from the Holens-Ðoković
conjecture on permanents in [25], namely the inequality

mk+1(G)

mk(G)
≥ d(n− k)2

(k + 1)n

for d-regular bipartite graphs on 2n vertices. Wanless showed that this inequality does
not hold in general, but in certain special cases it is true, for instance when k ≤ n/d

or d ≥ n − 2 or d ≤ 2 or k ≤ 4. A little computation shows that if k(n−k)
n

≥ 2d,
then Theorem 1.10 implies this inequality for d-regular vertex-transitive bipartite
graphs. Actually, it might turn out that this inequality is true for every d-regular
vertex-transitive bipartite graph as the author is not aware of any counterexample.

5. Degenerate graphs

In this part we show that in Theorem 1.4, 1.9 and 1.10, the condition vertex-
transitivity is indeed necessary in the sense that there are d–regular bipartite graphs
for which g′(p0) < 0 for some p0 unlike in Theorem 1.4, and γ1 is much smaller than in
Theorem 1.9, and finally the ratio mn−1(G)

mn(G)
can be much bigger than in Theorem 1.10.

Given a finite bipartite d–regular graph G and an edge e of G, let p(e) be the prob-
ability that a uniform random perfect matching contains e. The following theorem
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was proved in [1]. The consequence of this theorem was that Theorem 1.8 is not true
without vertex-transitivity.

Theorem 5.1 ([1]). For any integer d ≥ 3, there exists a constant 0 < c < 1 such
that for any positive integer n ≥ d there exists a d–regular bipartite simple graph on
2n points with an edge e such that

p(e) > 1− cn.

Note that for any vertex v, we have∑
f :v∈f

p(f) = 1.

In particular, for an edge f incident to an edge e of Theorem 5.1, we have p(f) < cn.

Let us introduce

s(G) =
mn−1(G)

n ·mn(G)
.

The following proposition is trivial, but important.

Proposition 5.2.

γ1 ≤
1

s(G)
≤ nγ1.

Proof.

s(G) =
1

n

n∑
i=1

1

γi
.

Hence
1

nγ1
≤ s(G) ≤ 1

γ1
.

�

Proposition 5.3. Let G be a d–regular bipartite graph on 2n vertices. Let e =
(u, v) ∈ E(G), and let p(e) denote the probability that it is contained in a uniform
random perfect matching. There exists a bipartite d–regular graph G∗ on 2(dn + 1)
vertices for which

s(G∗) ≥ 1

d(dn+ 1)

(
1

p(e)
− 1

)
.

Proof. Let us take d copies of G− e, and two new vertices u∗ and v∗. Let us connect
u∗ with the vertices corresponding to v in each copy of G−e. Similarly, let us connect
v∗ with the vertices corresponding to u in each copy of G − e. Then the obtained
graph G∗ is a d–regular bipartite graph on 2(dn+1) vertices. Note that each perfect
matching of G∗ consists of an edge pair (u∗, vi), (v∗, ui), d − 1 perfect matchings of
G− e and one perfect matching of Gi − {ui, vi}. Hence

mdn+1(G
∗) = dmn−1(G− {u, v})mn(G− e)d−1.

On the other hand,

mdn(G
∗) ≥ mdn(G

∗ − {u∗, v∗}) = mn(G− e)d.
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Hence,

s(G∗) =
1

dn+ 1
· mdn(G

∗)

mdn+1(G∗)
≥ 1

d(dn+ 1)

mn(G− e)

mn−1(G− {u, v})
=

=
1

d(dn+ 1)

mn(G)−mn−1(G− {u, v})
mn−1(G− {u, v})

=
1

d(dn+ 1)

(
1

p(e)
− 1

)
since

p(e) =
mn−1(G− {u, v})

mn(G)
.

�
Proposition 5.4. For every integer d ≥ 3 there exists a sequence of d–regular bi-
partite graphs (Hi) and a constant c < 1 for which γ1(Hi) < cv(Hi). Furthermore,
for every Hi there exists some p0 = p0(Hi) such that for the derivative of the gap
function g(p), we have g′(p0) < 0.

Proof. By Theorem 5.1, there exists a sequence of bipartite d–regular graphs (Gi)
with some edge fi for which p(fi) < cn1 , where c1 < 1 only depends on d. This shows
that for the graphs Hi = G∗

i constructed in Proposition 5.3 we have s(Hi) > Cn
1 for

large enough n, where C1 > 1 only depends on d. By Proposition 5.2 this shows that
γ1(Hi) < c

v(Hi)
2 .

Let H = Hi on n vertices. We have seen in the proof of Theorem 1.4 that

g′(p) =
1

2
ln

(
q(1− q)

t · (1− d · q)2

)
,

where q = p/d. Since q(1− q) ≤ 1, it is enough to show that for some t0 we have

t0(1− p0)
2 > 1.

It turns out that in fact t(1 − p)2 can be arbitrarily large. Indeed, we have seen in
the proof of Theorem 1.9 that

t(1− p)2 = t

(
1

n

n∑
i=1

1

1 + γit

)2

≥ t

n2(1 + γ1t)2
.

If we choose t0 = 1/γ1, we see that

t0(1− p0)
2 ≥ 1

4n2γ1
.

Since γ1 can be as small as cn, we see that t0(1− p0)
2 can be arbitrarily large. �

6. Benjamini–Schramm convergent graph sequences

Recall that we call a probability distribution L on (infinite) rooted graphs a random
rooted graph. For a finite rooted graph α and a positive integer r, P(L, α, r) denotes
the probability that the r-ball centered at a random root vertex chosen from the
distribution L is isomorphic to α.

For a finite graph G, a finite rooted graph α and a positive integer r, P(G,α, r)
denotes the probability that the r-ball centered at a uniform random vertex of G is
isomorphic to α.

Recall that we say that a sequence (Gn) of bounded degree graphs is Benjamini–
Schramm convergent if for all finite rooted graphs α and r > 0, the probabilities
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P(Gn, α, r) converge. Furthermore, we say that (Gn) Benjamini–Schramm converges
to L, if for all positive integers r and finite rooted graphs α, P(Gn, α, r) → P(L, α, r).

6.1. Benjamini–Schramm convergence and matching measure. In this sec-
tion we review a few things from the paper [2].

Recall that the matching measure of a finite graph is defined as

ρG =
1

v(G)

∑
zi: µ(G,zi)=0

δ(zi),

where δ(s) is the Dirac-delta measure on s, and we take every zi into account with
its multiplicity.

In other words, the matching measure is the probability measure of uniform distri-
bution on the zeros of µ(G, x). The following theorem connects the weak convergence
of matching measures with Benjamini–Schramm convergent graph sequences.

Theorem 6.1 ([1, 2]). Let (Gi) be a Benjamini–Schramm convergent bounded degree
graph sequence. Let ρGi

be the matching measure of the graph Gi. Then the sequence
(ρGi

) is weakly convergent, i. e., there exists some measure ρL such that for every
bounded continuous function f , we have

lim
i→∞

∫
f(z) dρGi

(z) =

∫
f(z) dρL(z).

Based on Theorem 6.1, one can prove the following theorem also proved in [2] on
limits of p(Gi, t), t(Gi, p) and λGi

(p).

Theorem 6.2 ([2]). Let (Gi) be a Benjamini–Schramm convergent graph sequence of
bounded degree graphs. Then the sequences of functions
(a)

p(Gi, t),

(b)
lnM(Gi, t)

v(Gi)

converge to strictly monotone increasing continuous functions on the interval [0,∞).
Let p0 be a real number between 0 and 1 such that p∗(Gi) ≥ p0 for all i. Then
(c)

t(Gi, p),

(d)
λGi

(p)

are convergent for all 0 ≤ p < p0.

Definition 6.3. Let L be a random rooted graph which can be obtained as a limit of
Benjamini–Schramm convergent graph sequence (Gi). Assume that p∗(Gi) ≥ p0 for
all i. Let us define the function p(L, t), t(L, p) and λL(p) as the corresponding limits:

p(L, t) = lim
i→∞

p(Gi, t), t(L, p) = lim
i→∞

t(Gi, p), and λL(p) = lim
i→∞

λGi
(p),

where t ∈ [0,∞) and p ∈ [0, p0). Finally, let us define

λL(p0) = lim
p↗p0

λL(p).
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Remark 6.4. Clearly, the functions p(L, t), t(L, p) and λL(p) do not depend on the
choice of the sequence (Gi) since if (Gi) and (Hi) are two different graph sequences
Benjamini–Schramm converging to L then they converge to L even together.

Furthermore, if we can choose the graph sequence (Gi) such that every graph Gi

contains a perfect matching then we can choose p0 to be 1, so we can define λL(p) on
the whole interval [0, 1].

A simple calculation shows that if G is finite graph then

p(G, t) =

∫
tz2

1 + tz2
dρG(z)

and

F (G, t) =
lnM(G, t)

v(G)
− 1

2
p(G, t) ln(t) =

∫
1

2
ln
(
1 + tz2

)
dρG(z)−

1

2
p(G, t) ln(t).

Now if (Gi) Benjamini–Schramm converges to L, then by Theorem 6.1, the sequence of
measures (ρGi

) weakly converges to some measure which we will call ρL, the matching
measure of the random rooted graph L. Consequently, for t > 0, we have

p(L, t) =

∫
tz2

1 + tz2
dρL(z)

and

F (L, t) =

∫
1

2
ln
(
1 + tz2

)
dρL(z)−

1

2
p(L, t) ln(t).

This can be used as an alternative definition for the functions p(L, t), t(L, p) and
λL(p).

Note that in general it is not true that

lim
i→∞

λGi
(1) = λL(1).

On the other hand, Theorem 1.8 –the way it is given in this section, and not in the
Introduction– asserts that it is true if all Gi are vertex-transitive bipartite graphs.

Many statements have a very clear meaning if we can consider random rooted
graphs. For instance, the following proposition –which is just a reformulation of part
(c) of Proposition 2.5– shows the role of the infinite d–regular tree Td as an extremal
graph among vertex-transitive bipartite graphs.

Proposition 6.5. Let G be d–regular vertex-transitive bipartite graph. Then

t(G, p) ≤ t(Td, p)

for 0 ≤ p < 1 and
p(G, t) ≥ p(Td, t)

for t ≥ 0.

Proof. It is known (see [4]) that

t(Td, p) =
p(d− p)

d2(1− p)2
,

so the inequality
t(G, p) ≤ t(Td, p)
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is just a reformulation of part (c) of Proposition 2.5. The other inequality immediately
follows from the first one. We note that

p(Td, t) =
2d2t+ d− d ·

√
1 + 4(d− 1)t

2d2t+ 2
.

�

Remark 6.6. We would like to point out an interesting dichotomy between finite
graphs and infinite random rooted graphs. Part (b) of Proposition 2.5 shows that

t(G, p) ≥ p

d(1− p)
.

while part (a) shows that

t(G, p) ≥ c

1− p

if p ≥ p0 and c = t(G, p0)(1− p0) for any p0. On the other hand,

t(G, p) ≤ C(G)

1− p
,

where

C(G) =
2

v(G)

v(G)/2∑
i=1

1

γi
.

We mention that if (Gn) converges to a random rooted graph L, then the sequence
(C(Gn)) is not necessarily bounded. So for a random rooted graph L, it is not
necessarily true that for some C(L) we have

t(L, p) ≤ C(L)

1− p
.

In fact, the d-regular infinite tree Td is already a counterexample.
On the other hand, part (c) of Proposition 2.5 or equivalently Proposition 6.5 show

that for vertex-transitive d–regular bipartite graphs, we have

t(G, p) ≤ t(Td, p) ≤
d− 1

d2
· 1

(1− p)2
.

This shows that if L is the limit of a sequence of d–regular vertex-transitive bipartite
graphs (like Zd), then

t(L, p) ≤ t(Td, p) ≤
d− 1

d2
· 1

(1− p)2
.

We will prove a matching lower bound for certain random rooted graphs, see Propo-
sition 6.7. This shows that for infinite lattices, the growth of t can be as fast as
c/(1− p)2 as p tends to 1 unlike in the case of finite graphs.

Proposition 6.7. Let L be a random rooted graph which can be obtained as a limit of
bounded degree finite graphs with perfect matchings. Assume that the measure ρL is
absolutely continuous to the Lebesgue measure, and has a density function f(z) such
that

min
|z|≤ε

f(z) ≥ f0 > 0
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for some ε and f0. Then for t ≥ 1
ε2

we have

t ≥ f 2
0

(1− p)2
,

where p = p(L, t).

Proof. Let t ≥ 1
ε2

, then we have
√
t(1− p) =

√
t

∫
1

1 + tz2
dρL(z) ≥

√
t

∫
{|z|≤1/

√
t}

1

1 + tz2
dρL(z) ≥

≥
√
t

∫
{|z|≤1/

√
t}

1

2
dρL(z) ≥

√
t · 1

2
· 2√

t
f0 = f0.

In the last step we have used that for |z| ≤ 1√
t
≤ ε, we have f(z) ≥ f0. �

Remark 6.8. We conjecture that for all d, the lattice Zd satisfies the condition of
the Proposition 6.7.

Let (Gi) be a sequence of d–regular graphs such that g(Gi) → ∞, where g(H)
denotes the length of the shortest cycle of a graph H. Then (Gi) Benjamini–Schramm
converges to the infinite d–regular tree Td. The limit measure ρTd

is the Kesten–
McKay measure. In general, the matching measure and the spectral measure coincides
for (finite and infinite) trees [1]. The density function of the Kesten–McKay measure
is the following

fd(x) =
d
√

4(d− 1)− x2

2π(d2 − x2)
χ[−ω,ω],

where ω = 2
√
d− 1. On the one hand, this shows a natural example when the

condition of Proposition 6.7 is satisfied. On the other hand, the value of this density
function at point 0 is

fd(0) =
1

π
·
√
d− 1

d
,

this is only multiplicative constant factor away from the bound appearing in Theo-
rem 1.9 independently of d.

6.2. Perfect matchings in Benjamini–Schramm convergent sequence of vertex-
transitive bipartite graphs. In this section we prove Theorem 1.8. For the sake
of convenience we repeat it with an extra statement.

Theorem 1.8. Let (Gi) be a Benjamini–Schramm convergent sequence of vertex-
transitive bipartite d–regular graphs. Then the sequence

λGi
(1) =

ln pm(Gi)

v(Gi)

is convergent. Furthermore, if Gi converges to some random rooted graph L, then we
have

lim
i→∞

λGi
(1) = λL(1).
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Proof. Let 2ni be the number of vertices of the graph Gi, and

M(Gi, t) =

ni∑
k=0

mk(G)tk =

ni∏
j=1

(1 + γj(Gi)t),

where γ1(Gi) ≤ γ2(Gi) ≤ · · · ≤ γni
(Gi). Let ρGi

be the uniform measure on the
numbers γj(Gi), and let ρGi

be the matching measure of Gi. By Theorem 6.1, the
sequence of matching measures (ρGi

) is weakly convergent. This implies that the
sequence (ρGi

) is weakly convergent too, let ρL be the limit measure. Note that
Theorem 1.9 implies that

ρGi
([0, t]) =

1

ni

|{j | γj(Gi) ≤ t}| ≤ 2
√
d− 1

d

√
t

since

γj(Gi) ≥
d2

4(d− 1)

j2

n2
i

.

Because of the weak convergence, this inequality holds for ρL too. This implies that
ln(x) is uniformly integrable: let F (t) = ρ([0, t]) for some measure satisfying the
above inequality, and assume ε ≤ 1, then integration by parts imply that∣∣∣∣∫ ε

0

ln(x) dρ(x)

∣∣∣∣ = ∫ ε

0

(− ln(x)) dF (x) =

= F (x)(− ln(x))|ε0 −
∫ ε

0

F (x) d(− ln(x)) ≤ F (ε) ln

(
1

ε

)
+

∫ ε

0

F (x)

x
dx ≤

≤ 2
√
d− 1

d

(√
ε ln

(
1

ε

)
+

∫ ε

0

√
x

x
dx

)
=

2
√
d− 1

d

(√
ε ln

(
1

ε

)
+ 2

√
ε

)
,

which tends to 0 if ε tends to 0. Since
ln pm(Gi)

v(Gi)
=

1

2

∫
ln(x) dρGi

(x),

it immediately implies that

lim
i→∞

ln pm(Gi)

v(Gi)
=

1

2

∫
ln(x) dρL.

�
Corollary 6.9. Let (Gi) be a Benjamini–Schramm convergent sequence of vertex-
transitive bipartite d–regular graphs. Let Hi be another Benjamini–Schramm conver-
gent sequence of d–regular graphs such that the sequences (Gi) and (Hi) are Benjamini–
Schramm convergent together. Then

lim sup
i→∞

ln pm(Hi)

v(Hi)
≤ lim

i→∞

ln pm(Gi)

v(Gi)
.
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