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Preface

It was late afternoon. The last rays of the sun filtered through the curtain. My

brother was about to leave after spending the whole day with us. Suddenly he turned

to me: ”I have a mathematical question. I’m writing a program that produces some

log files. My plan is to generate a random integer between 1 and N , and give it as

a name of the file. I’m doing this, because the program will run on a network, and

I would like to avoid that two different computers produce different log files with

the same name. I have an estimate on the number of log files. How large should I

choose N to make the probability of the collision negligible?”. The problem itself is

not very hard. It became popular under the name birthday paradox. This paradox

asserts that in case of 23 people the chance that two of them have birthdays on the

same day is bigger than 50% assuming that none of them were born on February 29

and the rest 365 days have the same probability. I could instantly provide various

bounds on the probability and how to choose N in terms of the number m of log

files. My brother was really impressed by the fast answer. But honestly, I was

even more impressed. One hundred years ago even mathematicians didn’t think

about random constructions, and now even programmers think to randomness as a

possible solution. Under one hundred year randomness became tool, structure and

property at the same time. This course is about taming randomness. I’m pretty sure

that ten years later you won’t remember much from the course. You will not only

not remember what Janson’s inequalities are, but you won’t even know that they

exist. Still you will have a clever feeling: Maybe randomness can solve the problem.

This is good enough goal for a semester course.

⋆ ⋆ ⋆
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So this is the Probabilistic method lecture note. Having it is only a good start,

you have to carefully study to learn its content. I suggest you printing it out and

carry with yourself to the lectures. If you carry it to the lectures then you don’t

have to make notes, you can add things to the margins. If you decide not to print it

out then use at least a tablet and download the lecture note in advance. The wi-fi

is very bad at the lecture halls, and figuring out difficult things (with notations on

a different page) on a small smart phone is almost impossible.

Some words about the topics of this course. The primary goal is to learn how

to use probabilistic tools to solve discrete mathematical problems. Please, make

sure that you have a firm knowledge on probability theory at the beginning of the

semester, otherwise you will be constantly lost. The first chapter may give you some

impression what kind of things you need to revise.

Some words about the lecturer. Not too bad. If you have problems, please ask

his help. He can save you a lot of time by answering questions. Note that even

this marvelous lecture note is not capable of directly answering your questions. So,

please, don’t be shy or too proud to ask questions.

Good luck!
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1. Basics

1.1 Notations

Let Z be the set of integers, and Z+ = {k ≥ 0| k ∈ Z} be the set of non-negative

integers. Let [n] = {1, 2, . . . , n}. The notation
(
[n]
k

)
stands for the k-element subsets

of [n].

The expected value of a random variable X is∫
Ω

XdP.

If X takes only non-negative integers then

EX =
∞∑
k=0

kP(X = k).

The variance of a random variable is

Var(X) = E(X − EX)2 = EX2 − (EX)2.

The covariance of the random variables X and Y will be denoted by

Cov(X, Y ) = E(XY )− EX · EY.

If X = X1 +X2 + · · ·+Xn then

Var(X) =
n∑

i=1

Var(Xi) +
∑
i ̸=j

Cov(Xi, Xj).

The conditional probability of an event A with respect to an event B with non-zero

probability is defined as follows:

P(A|B) :=
P(A ∩B)

P(B)
.
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One can also the consider the conditional expectation of X with respect to the event

B:

E(X|B) =
∑
x

xP(X = x|B).

If X and Y are discrete random variables such that P(Y = y) ̸= 0 for any y ∈ Z+

then E(X|Y ) is a function on Z+ that at evaluated at y as follows:

E(X|Y )(y) = E(X|Y = y) =
∑
x

xP(X = x|Y = y).

This is an important special case of the general definition of the conditional expecta-

tion E(X|F), where F is a σ-algebra. Note that when we have a finite or countably

finite set, say {1, 2, . . . , n} or Z, then a σ-algebra is a particularly simple thing: we

need to consider a partition A1 ∪ · · · ∪ Ak of {1, 2, . . . , n} and a σ-algebra consists

of those sets that are unions of some Ai’s. Note that an F -measurable function is

simply a function that is constant on each Ai. The conditional expectation E(X|Y )

corresponds to the case when FY is generated by the sets Ay = {Y = y}. (In this

sense, the notation E(X|Y )(y) was a tiny cheating as E(X|Y ) is defined on the whole

set, say {1, 2, . . . , n}, not on the elements Ai’s, it is only constant on the Ai’s.) So

for a k ∈ {1, 2, . . . , n}

E(X|F)(k) =
∑
r

rP(X = r|r and k are in the same set Ai).

In words, we take the set Ai of the partition containing k, and we average according

to the corresponding conditional probability P(X = r)/P(X ∈ Ai).

1.2 Useful inequalities

Proposition 1.2.1. For all x ∈ R we have 1 + x ≤ ex.

Proof. If x > 0 then

1 + x ≤
∞∑
k=0

xk

k!
= ex.

If x ≤ −1 then the claim is trivial. If −1 ≤ x ≤ 0, then set y = −x ≥ 0. Then

1

1− y
=

∞∑
k=0

yk ≥
∞∑
k=0

yk

k!
= ey.

Hence ex = e−y ≥ 1− y = 1 + x.
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Proposition 1.2.2. We have (
n

k

)
≤
(en
k

)k
.

Proof. Since
(
n
k

)
≤ nk

k!
, it is enough to prove that k! ≥

(
k
e

)k
. This is indeed true:

ek ≥
k−1∏
j=1

(
1 +

1

j

)j

=
k−1∏
j=1

(j + 1)j

jj
=

kk−1

(k − 1)!
=
kk

k!
.

1.3 Basic inequalities in probability theory

We recall some basic inequalities.

Proposition 1.3.1 (Union bound).

P

(
m⋃
i=1

Ai

)
≤

m∑
i=1

P(Ai).

Theorem 1.3.2 (Markov’s inequality). Let X be a non-negative random variable

with EX > 0. Then for arbitrary positive λ we have

P(X ≥ λ) ≤ EX
λ
.

Proof.

EX =

∫
XdP ≥

∫
{X≥λ}

XdP ≥
∫
{X≥λ}

λdP = λP(X ≥ λ).

A simple corollary of Markov’s inequality is Chebyshev’s inequality.

Theorem 1.3.3 (Chebyshev’s inequality). Let X be a random variable with EX = µ

and Var(X) = σ2. Then

P(|X − µ| ≥ λσ) ≤ 1

λ2
.

Proof. Let us apply Markov’s inequlity to the random variable Y = (X − µ)2. Then

EY = Var(X) = σ2 by definition.

P(|X − µ| ≥ λσ) = P(Y ≥ λ2σ2) ≤ EY
λ2σ2

=
1

λ2
.
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⋆ ⋆ ⋆

In this lecture note we would like to prove combinatorial theorems and so many

times the studied random variable X takes only non-negative integer values. In

fact, often one can translate the combinatorial statement to a statement about the

probability that a random variable takes the value 0. This motivates us to collect

some results on estimates of P(X = 0).

Theorem 1.3.4. If X takes only non-negative integer values then

P(X = 0) ≥ 1− EX.

Proof. We have

P(X > 0) =
∞∑
k=1

P(X = k) ≤
∞∑
k=0

kP(X = k) = EX,

or equivalently,

P(X = 0) ≥ 1− EX.

This implies that for instance, if the sequence of random variables Xn satisfy that

limn→∞ EXn = 0 then

lim
n→∞

P(Xn = 0) = 1.

However, EXn → ∞ does not guarantee that

lim
n→∞

P(Xn = 0) = 0.

To phrase such a statement we also need the variance of the random variables Xn.

Theorem 1.3.5.

P(X = 0) ≤ Var(X)

(EX)2
.

Proof. Let us use Chebyshev-inequality.

P(X = 0) ≤ P(|X − EX| ≥ EX) ≤ Var(X)

(EX)2
.
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Remark 1.3.6. For non-negative random variables the above inequality can be

improved as follows:

P(X = 0) ≤ Var(X)

E(X2)
.

Since E(X2) ≥ (EX)2 this is indeed an improvement. The proof of this inequality

is a simple application of the Cauchy–Schwarz inequality: set A = {ω | X(ω) > 0},
then (∫

A

XdP

)2

≤
(∫

A

1dP

)(∫
A

X2dP

)
,

that is

(EX)2 ≤ (1− P(X = 0))(E(X2)).

After some algebraic manipulation we get that

P(X = 0) ≤ Var(X)

E(X2)
.

Theorem 1.3.5 implies that if limn→∞
Var(Xn)
(EXn)2

= 0 then

lim
n→∞

P(Xn = 0) = 0.

We can also see that if Var(Xn) = o((EXn)
2) then Xn is concentrated around EXn

which we can simply denote by Xn ∼ EXn.
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2. Existence results

In mathematics we often face with the problem that we need to prove that a certain

structure S exists with a required property P . In most cases we simply prove the

existence by constructing the required structure S. Unfortunately, sometimes this

route does not work and we can only give an existence proof, a proof that does not

give much besides the existence. A popular tool providing such proofs is for instance

the pigeonhole principle.

In this whole course, we study another tool. This is the so-called probabilistic

method. Using this method we show that in a certain probability space the required

structure S exists with positive probability. In this chapter we give the most basic

examples of this method where one only needs to use the union bound, Proposi-

tion 1.3.1.

2.1 Diagonal Ramsey numbers

Recall that the Ramsey-number R(r, b) denotes the smallest n such that no matter

how we color the edges of the complete graph Kn with red and blue colors it will

either contain an induced red Kr or a blue Kb. Note that the definition implies that

for n = R(r, b)− 1 there is a coloring of Kn without red Kr and blue Kb.

Theorem 2.1.1 (Erdős). Suppose that the positive integers n, k satisfy the inequality(
n
k

)
21−(

k
2) < 1. Then R(k, k) > n. In particular, R(k, k) > ⌊2k/2⌋ if k ≥ 3.

Proof. We need to show that there exists a coloring of the edge set of Kn that does

not contain either monochromatic red or blue clique Kk. Let us color each edges

with color red or blue with probability 1/2 independently of each other. Now let us

estimate the probability that the coloring is bad, i. e., it contains a monochromatic

red or blue Kk. For each S ⊂ V (G) with |S| = k let AS be the event the induced
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subgraph on S is monochromatic. Then

P(coloring is bad) ≤
∑
|S|=k

P(AS) =

(
n

k

)
2

2(
k
2)
.

By the condition of the theorem
(
n
k

)
21−(

k
2) < 1, so the probability that the coloring

is good is positive.

Next we show that for k ≥ 3 and n = ⌊2k/2⌋ the condition of the theorem is

satisfied. Indeed,(
n

k

)
21−(

k
2) <

nk

k!
21−(

k
2) ≤ 2k

2/2

k!
21−(

k
2) =

2(k+2)/2

k!
< 1.

if k ≥ 3.

2.2 Tournaments

Definition 2.2.1. A tournament is a complete directed graph. A tournament D is

called k-dominated if for every k vertices v1, . . . , vk there exists a vertex u such that

(u, vi) ∈ E(D) for i = 1, . . . , k.

Theorem 2.2.2 (Erdős [10]). If n is large enough then there exists a k-dominated

tournament on n vertices.

Proof. Let us orient each edge with probability 1/2−1/2 independently of each other.

Then the probability that for a given set of vertices v1, . . . , vk there is no u such that

all (u, vi) ∈ E(D) is (1− 1/2k)n−k. Hence the probability that the orientation is bad

is at most (
n

k

)(
1− 1

2k

)n−k

.

A little computation shows that if n
lnn

> k2k, then this is less than 1. For large k this

is satisfied if n > k22k. Hence with positive probability there exists a k-dominated

tournament.

Remark 2.2.3. The computation can be carried out using the bound 1 + x < ex:(
n

k

)(
1− 1

2k

)n−k

≤ nk

k!
exp

(
− 1

2k
(n− k)

)
≤ 1

k!
exp

(
k

2k

)
· exp

(
k lnn− n

2k

)
9



≤ e

k!
exp

(
k lnn− n

2k

)
≤ e

k!
< 1

if n
lnn

> k2k.
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3. First Moment Method

In the previous chapter we have seen some very simple ideas how to find a certain

structure S by proving that it exists with positive probability just by using union

bound. Here we study another very simple technique. This is the so-called first

moment method. In many cases the structure S that we need to find is defined

through some parameter f(S). For instance, we need to prove that there exists

a structure S for which some parameter f(S) satisfies f(S) ≥ ρ. If we find a

probability space in which the expected value of f(S) is bigger or equal to ρ then we

can immediately conclude that f(S) ≥ ρ with positive probability.

3.1 Warm-up: large bipartite subgraphs

Theorem 3.1.1 ([4]). Let G be a graph with n vertices and e(G) edges. Then G has

a bipartite subgraph with at least e(G)/2 edges.

Proof. One can rephrase the statement of the theorem as follows: there exists a cut

(A, V \ A) of G such that the number of edges (e(A, V \ A)) contained in the cut is

at least e(G)/2.

Let us consider the random set A which contains every v ∈ V (G) with probability

1/2 independently of each other. (This way we have defined a probability space.) Let

us consider the random variable X = e(A, V \A). We have to show that with positive

probability X ≥ e(G)/2. To this end it is enough to show that EX = e(G)/2. This is

indeed true. For every edge f ∈ E(G) let us introduce the indicator random variable

Xf which takes value 1 if f is in the cut (A, V \ A), and 0 otherwise. Then

EX = E

 ∑
f∈E(G)

Xf

 =
∑

f∈E(G)

EXf .

(Note that the random variablesXf are not necessarily independent, but the linearity

of expectation holds true even with non-independent random variables.) For all
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f ∈ E(G) we have EXf = 1/2 since the end points of f are in the same set with

probability 1/2 and they are in different sets with probability 1/2. Hence

EX =
∑

f∈E(G)

EXf =
∑

f∈E(G)

1

2
=

1

2
e(G).

We are done!

3.2 Independent sets

Theorem 3.2.1 (Caro; Wei). Let G be a graph with vertex degrees d1, . . . , dn. Let

α(G) be the size of the largest independent set of the graph G. Then

α(G) ≥
n∑

i=1

1

di + 1
.

Proof. Consider a random permutation of the vertices. Let us encircle all the vertices

that precede all their neighbors in the given order. Let X(π) be the random variable

that counts the number of encircled vertices. For a given vertex v ∈ V (G) let

Xv be the indicator variable that the the vertex v is encircled or not. Then X =∑
v∈V (G)Xv, consequently

EX =
∑

v∈V (G)

EXv.

Note that for a vertex v we have EXv =
1

dv+1
since the probability that v precedes its

neighbors is the same as saying that v is the first among dv +1 vertices in a random

permutation, and this probability is clearly 1
dv+1

. Hence

EX =
∑

v∈V (G)

EXv =
n∑

i=1

1

di + 1
.

With positive probability X is at least as large as this expected value. On the other

hand, in an arbitrary order the encircled vertices form an independent set since if

two of them were adjacent, then the second of the two vertices in the order would

not be encircled. Hence

α(G) ≥ EX =
n∑

i=1

1

di + 1

as required.

Remark 3.2.2. From the above proof one can easily deduce Turán’s theorem.
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3.3 Crossing number

Theorem 3.3.1 (Ajtai-Chvátal-Newborn-Szemerédi [2]; Leighton). Let G be a graph

with n vertices and e edges. Let X(G) be the crossing number of the graph G. If

e ≥ 4n, then

X(G) ≥ e3

64n2
.

Proof. Recall that any planar graph with n vertices has at most 3n− 6 edges. Con-

sequently, if G is a graph with n vertices and e edges, then the crossing number is

at least e− (3n− 6) (why?). So

X(G) ≥ e(G)− 3v(G).

(The +6 won’t be important for us.) This is of course a weaker statement than what

we want to prove. The key idea of the better bound is to apply this weak inequality

to a random subgraph of G. Set 0 ≤ p ≤ 1 and consider the random subgraph of G

where we keep each vertex with probability p and delete it with probability 1 − p.

Let Gp be the obtained graph. Then

Ev(Gp) = pv(G) and Ee(Gp) = p2e(G),

since the probability that we keep an edge is p2, the probability that we keep both

end points of the edge. We need to be a bit more careful with EX(Gp). Starting

from an optimal drawing of G, the probability that a crossing remains is p4 since

all four vertices determining the crossing should remain. This means that starting

from an optimal drawing of G the expected value of the crossing number of Gp is

p4X(G). However, it may happen that Gp has a better drawing with smaller number

of crossings. So all we can say is that

EX(Gp) ≤ p4X(G).

Hence

p4X(G)− p2e(G) + 3pv(G) ≥ EX(Gp)− Ee(Gp) + 3Ev(Gp) =

= E(X(Gp)− e(Gp) + 3v(Gp)) ≥ 0.

Whence p4X(G)− p2e(G) + 3pv(G) ≥ 0 for all 0 ≤ p ≤ 1. Now let us choose p to be
4v(G)
e(G)

. This is at most 1 according to the assumption of the theorem. Then

X(G) ≥ p−2e(G)− 3p−3v(G) =
e(G)3

64v(G)2
.

This is exactly what we wanted to prove.
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Since it is not clear how we can use such a statement let us consider a corollary

of this theorem. Then later we even consider a corollary of this corollary.

Suppose that we are given some points and lines on the plane. Let P be the set

of points, and L be the set of lines. The number of point-line incidences is exactly

what we expect:

I(P ,L) = |{(P,L) ∈ P × L | P ∈ L}|.

Let I(n,m) be the maximal number of incidences given n points and m lines:

I(n,m) = max
|P|=n,|L|=m

I(P ,L).

The following theorem gives a good bound on I(n,m).

Theorem 3.3.2 (Szemerédi-Trotter [17]).

I(n,m) ≤ 4(m2/3n2/3 +m+ n).

Proof. Let us consider the graph G whose vertices are the elements of the set P , i.

e., the points, and two points are adjacent if there is a line ℓ ∈ L that contains the

two points next to each other.

First let us determine the number of edges of the graph G. If a line contains k

points then it determines k − 1 edges. Hence the number of edges is I(P ,L) −m.

Next let us give an upper bound on X(G). Two edges intersect each other if two

lines intersect each other. Hence X(G) is at most
(
m
2

)
. If e(G) < 4n then

I(P ,L) < 4n+m < 4(m2/3n2/3 +m+ n).

If e(G) ≥ 4n, then we can use the previous theorem:(
m

2

)
≥ X(G) ≥ e(G)3

64n2
=

(I(P ,L)−m)3

64n2
.

Thus

I(P ,L) ≤ (32m2n2)1/3 +m < 4(m2/3n2/3 +m+ n).

Hence

I(n,m) ≤ 4(m2/3n2/3 +m+ n).
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Remark 3.3.3. We used very little information about the lines. We simply used

that two lines have at most one intersection. We could have considered circles or

arbitrary curves of degree at most d, these curves have also bounded number of

intersections. Naturally, the constants in the theorem would have been worse, but

still we would have received a bound of type Od(n
2/3m2/3 + n +m) for the number

of incidences.

In what follows we consider a nice application of the Szemerédi-Trotter theorem.

Let A ⊂ R be a finite set, and let

A+ A = {a+ a′ | a, a′ ∈ A}

and

A · A = {a · a′ | a, a′ ∈ A}.

If A = {1, 2, . . . , n}, then A + A = {2, . . . , 2n}, and so |A + A| = 2n − 1.

However, in this case we have |A · A| = Ω
(

n2

(logn)α

)
. If A = {1, 2, 22, . . . , 2n−1} then

|A · A| = 2n − 1, but then we have |A + A| =
(
n
2

)
. After checking several examples

one will have the feeling that one of the sets should be large. This is a well-known

conjecture:

Conjecture 3.3.4 (Erdős-Szemerédi). For all ε > 0 there exists a constant c(ε) such

that for all finite set A ⊂ R we have

|A+ A|+ |A · A| ≥ c(ε)|A|2−ε.

We are very far from proving this conjecture. The following result of György

Elekes was a real breakthrough in 1997, and it opened the way of geometric arguments

in additive combinatorics.

Theorem 3.3.5 (Elekes [8]). Let A ⊂ R be a finite set. Then

|A+ A| · |A · A| ≥ c|A|5/2.

In particular,

|A+ A|+ |A · A| ≥ c′|A|5/4.

Proof. Let P = {(a, b) |a ∈ A + A, b ∈ A · A}. This is a point set on the plane of

size |A+ A||A · A|.
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Let us consider the lines of following type:

ℓa,b = {(x, y) | y = a(x− b)},

where a, b ∈ A. Let L be the set of these lines. Then |L| = |A|2. Every such line

contains |A| points form P : (b + c, ac) ∈ ℓa,b if c ∈ A. Whence I(P,L) ≥ |A|3.
According to Szemerédi-Trotter theorem we have

|A|3 ≤ 4((|A+ A| · |A · A|)2/3(|A|2)2/3 + |A+ A| · |A · A|+ |A|2).

From this the statement of the theorem follows after a little computation.

Remark 3.3.6. Currently, the best-known result is due to József Solymosi [16]:

|A+ A|+ |A · A| ≥ c(ε)|A|4/3−ε.

More precisely, Solymosi showed that

|A · A| · |A+ A|2 ≥ |A|4

4⌈ln |A|⌉
,

consequently,

max(|A · A|, |A+ A|) ≥ |A|4/3

2⌈ln |A|⌉1/3
.
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4. Alteration

In this chapter we study a method called the altered first moment method. It is a

slightly bit more tricky than the first moment method. Here the randomly chosen

structure S will not be immediately good, but will be bad just a little bit so that we

can fix the bad part of the structure. In practice, there will be a parameter f(.) that

measures the badness of the structure (or if there is a given parameter f(.) already,

then we prepare a new parameter f ′(.) measuring f(.) and the badness at the same

time). If the expected value of this badness parameter is small, then with positive

probability we can find a random structure that we can fix later. After the examples

it will be clear how this method works.

4.1 Independent sets in graphs and hypergraphs

Theorem 4.1.1. Let H be an r-uniform hypergraph with n vertices and e(H) edges.

Suppose that n ≤ 2e. Then there exists a set S ⊆ V (H) inducing no edge such that

|S| ≥ 1

2

(
n

2e(H)

)1/(r−1)

n.

Proof. Let T be a random subset of the vertex set chosen as follows: we choose each

element of V to be in T with probability p. We will choose p later. Then E|T | = pn

and for the number of edges induced by T we have E(e(T )) = pre(H). Then

E(|T | − e(T )) = pn− pre(H).

Let

p = p0 =

(
n

2e(H)

)1/(r−1)

.

Then p0n− pr0e(H) = p0n/2. Therefore,

E(|T | − e(T )) =
1

2
p0n.

17



Hence there must be a set T for which |T | − e(T ) ≥ 1
2
p0n. Let S ⊆ T be a set

obtained from T by deleting one vertex of each edge of T . Then S induces no edge

and

|S| ≥ |T | − e(T ) ≥ 1

2
p0n =

1

2

(
n

2e(H)

)1/(r−1)

n.

Remark 4.1.2. In the case of graphs, that is r = 2, this theorem says that

α(G) ≥ n2

4e(G)
.

This is always weaker than the bound

α(G) ≥
n∑

i=1

1

di + 1

obtained earlier.

We could have chosen p in a bit better way by simply choosing it such a way that

it maximizes pn− pre(H). This would have yielded the bound

α(H) ≥ r − 1

r

(
n

re(H)

)1/(r−1)

n.

4.2 Ramsey-numbers revisited

Theorem 4.2.1 ([4]). For all n and k we have R(k, k) > n−
(
n
k

)
21−(

k
2).

Proof. Let us color the edges of a complete graph Kn with red and blue. Let X be

the number of monochromatic Kk. Then

EX =

(
n

k

)
21−(

k
2).

So there must be a coloring with at most as many monochromatic Kk. Now let

us delete one vertex from each monochromatic Kk. Then the number of vertices is

at least n −
(
n
k

)
21−(

k
2) and the resulting graph has no monochromatic Kk. Hence

R(k, k) > n−
(
n
k

)
21−(

k
2).

Remark 4.2.2. A careful analysis shows that this bound implies that

R(k, k) ≥ 1

e
(1 + o(1))k2k/2

18



while our previous argument only gave

R(k, k) ≥ 1√
2e

(1 + o(1))k2k/2.

Later we will show by Lovász local lemma that

R(k, k) ≥
√
2

e
(1 + o(1))k2k/2.

4.3 Dominating sets in graphs

Theorem 4.3.1 ([4]). Let G = (V,E) be a graph with n vertices and minimum

degree δ > 1. Then it has a dominating set of size at most

n
1 + ln(δ + 1)

δ + 1
.

(A set U is called a dominating set of G if all v ∈ V \U has some neighbor u in U .)

Proof. The strategy is the following: we choose a random subset S and let T = T (S)

be the set of vertices v such that neither v, nor any of the neighbors of v are in the

set S. Then S ∪ T is a dominating set. Let us choose S as follows: we choose each

vertex v into S with probability p. We will choose p later. Then for any vertex v ∈ V

we have

P(v ∈ T ) = (1− p)1+d(v) ≤ (1− p)1+δ ≤ e−p(δ+1)

since neither v, nor any of the neighbors of v are in the set S. Hence

E(|S|+ |T |) = E|S|+ E|T | ≤ n(p+ e−p(δ+1)).

Let

p =
ln(δ + 1)

δ + 1
.

Then

E(|S|+ |T |) ≤ n(p+ e−p(δ+1)) =
n(1 + ln(δ + 1))

δ + 1
.

Hence with positive probability there must be a dominating set of at most this

size.
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4.4 Graphs with large chromatic number and girth

Theorem 4.4.1 (Erdős [9]). For arbitrary (k, ℓ) there exists a graph G whose chro-

matic number is at least k and the length of its shortest cycle is at least ℓ.

Proof. Let G(n, p) be the random graph with n vertices such that we draw all edges

with probability p = p(n) independently of each other. In this proof we will set

p = n−α, where α ≥ 0 is a parameter chosen later. First we estimate the number of

cycles shorter than ℓ . Given vertices v1v2 . . . vr form a cycle if vivi+1 (r+1 = 1) are

all edges, the probability of this event is pr. Naturally, we can choose the sequence

v1v2 . . . vr in n(n − 1) . . . (n − r + 1) ways, we only have to take take into account

that we counted the same cycle 2r ways (rotated and reflected copies). Let X be the

random variable counting the number of cycles of length at most ℓ−1. Furthermore,

let X(v1 . . . vr) (r ≤ ℓ−1) be the indicator random variable that the vertices v1 . . . vr

form a cycle in this order. Then

X =
∑

r,v1...vr

X(v1 . . . vr).

Hence

EX =
∑

r,v1...vr

EX(v1 . . . vr) =
ℓ−1∑
r=3

n(n− 1) . . . (n− r + 1)

2r
pr ≤

ℓ−1∑
r=3

(np)r

2r
.

Set M =
∑ℓ−1

r=3
(np)r

2r
. Suppose that with some choice of p we can ensure that M is

small, then with positive probability the number of cycles of length at most ℓ − 1

will be at most M and by throwing out one point from each cycle we get a graph on

at least n−M vertices that does not contain a cycle of length at most ℓ− 1. In fact,

we need to be a little bit more careful as we need that the number of short cycles

is small with large probability. Fortunately, we get it immediately: with probability

at least 1/2 the number of cycles of length at most ℓ− 1 is at most 2M . Otherwise

the expected value would be bigger than M .

Before we try to chose p appropriately let us see how we can bound the chromatic

number χ(G) of G. Here we use the simple fact that

χ(G) ≥ n

α(G)
.

This is true since all color class induces an independent set so its size is at most

α(G), so we need at least n
α(G)

colors to color G. So to make χ(G) large, it is enough
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to ensure that α(G) is small. Let us bound the probability that α(G) ≥ s. For a set

S of size s let AS be the event that S does not induce any edge. Then

P(α(G) ≥ s) ≤
∑
|S|=s

P(AS) =

(
n

s

)
(1− p)(

s
2) ≤ ns(1− p)(

s
2) ≤ (ne−p(s−1)/2)s.

(In the last step we used the fact that 1 + x ≤ ex is satisfied for all x. This is a

rather standard bound that is quite good if x is small.)

Now it is clear what we have to keep in mind: let M be small, so we need a small

p, but we also need that s is not too large and so we need that nep(s−1)/2 < 1. We

can easily achieve it as follows: set p = nθ−1 where θ = 1
2(ℓ−1)

and s = ⌈3
p
log n⌉.

Then

M =
ℓ−1∑
r=3

(np)r

2r
≤ nθ(ℓ−1)

ℓ−1∑
r=3

1

2r
≤ n1/2 log n ≤ n

4

if n is large enough. On the other hand,

P(α(G) ≥ s) ≤ (ne−p(s−1)/2)s ≤ 1/4

if n is large enough. Since P(X ≥ 2M) ≤ 1/2 and P(α(G) ≥ s) ≤ 1/4, with positive

probability there exists a graph where the number of short cycles is at most n/2 and

α(G) ≤ s. Now from all cycles of length at most ℓ − 1 let us throw out 1 vertex

and let G∗ be the obtained graph. Then G∗ has at least n/2 vertices and it does not

contain a cycle of length at most ℓ − 1. Furthermore, α(G∗) ≤ α(G) since G∗ is an

induced subgraph of G. Then

χ(G∗) ≥ |V (G∗)|
α(G∗)

≥ n/2

3n1−θ log n
=

nθ

6 log n
.

If n is large enough this is bigger than k. We are done!
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5. Second Moment method

In the previous chapters we used the union bounds and the first moment method.

These techniques are very powerful due to the fact that they do not require any

information on the dependence of the random variables.

In this section we see some applications of the second moment method which

roughly means that we use Chebyshev’s inequality as a new ingredient in our proofs.

We will see that at least we need some partial information about the dependence

of the random variables, but not too much. Generally quite crude bounds will be

enough to achieve our goals.

This section is based on the corresponding chapter of the book The Probabilistic

Method by Noga Alon and Joel Spencer.

In this section we study the threshold function of random graphs. This topic was

initiated in the seminal paper [11] of Erdős és Rényi: On the evolution of random

graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17-61. In fact all

results of this section can be found in this paper. This paper is on the internet in a

scanned form.

5.1 General approach

From Chapter 1 we know that for a non-negative random variable X taking only

non-negative integers we have

1− EX ≤ P(X = 0) ≤ Var(X)

(EX)2
.

These two inequalities will play a major role in this chapter. We will often encounter

the situation that having some property is equivalent with some random variable

taking value 0. Hence if EX is small then P(X = 0) is large, and so the random

structure has the desired property with large probability. On the other hand, if
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Var(X)
(EX)2

is small then the random structure doesn’t have the desired property with

large probability.

Often we will encounter with a sequence of structures, notably a sequence of

random graphs G(n, p). In this case X will be some Xn in a sequence. As we will see

it is also worth considering separately the case when Xn = X
(n)
1 +X

(n)
2 + · · ·+X

(n)
m

whereX
(n)
i are indicator random variables. LetX

(n)
i be the indicator random variable

of the event A
(n)
i . Let us introduce the notation i ∼ j if A

(n)
i and A

(n)
j are not

independent. Then it is also worth introducing the following sum:

∆n =
∑
i∼j

P(A(n)
i ∩ A(n)

j ).

(In this sum both (i, j) and (j, i) appear.) If P(A(n)
i ) = p

(n)
i then

Var(X
(n)
i ) = E(X(n)

i )2 − (EX(n)
i )2 = p

(n)
i − (p

(n)
i )2 ≤ p

(n)
i = EX(n)

i .

Furthermore,

Cov(X
(n)
i , X

(n)
j ) = E(X(n)

i X
(n)
j )− EX(n)

i · EX(n)
j ≤ E(X(n)

i X
(n)
j ) = P(A(n)

i ∩ A(n)
j ).

Using these inequalities we get that

Var(Xn) =
n∑

i=1

Var(X
(n)
i ) + 2

∑
i<j

Cov(X
(n)
i , X

(n)
j )

=
n∑

i=1

Var(X
(n)
i ) +

∑
i∼j

Cov(X
(n)
i , X

(n)
j )

≤
n∑

i=1

EX(n)
i +

∑
i∼j

P(A(n)
i ∩ A(n)

j )

= EXn +∆n.

Here we used the fact that if i ̸∼ j, equivalently A
(n)
i and A

(n)
j are independent, then

Cov(X
(n)
i , X

(n)
j ) = 0. Hence

Var(Xn) ≤ EXn +∆n.

Hence Theorem 1.3.5 implies the following statement.

Theorem 5.1.1. Suppose that EXn → ∞ and ∆n = o((EXn)
2).

Then P(Xn > 0) → 1.
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It is worth doing some extra work with ∆n. Many times the indicator random

variables X
(n)
1 , . . . , X

(n)
m have a symmetric role, in other words, for all i and j there

is an automorphism of the underlying space that takes A
(n)
i to A

(n)
j . Then

∆n =
∑
i∼j

P(A(n)
i ∩ A(n)

j ) =
∑
i

P(A(n)
i )
∑
j∼i

P(A(n)
j | A(n)

i ).

The inner sum is independent of i, because of the symmetry:

∆∗
n =

∑
j∼i

P(A(n)
j | A(n)

i ).

Hence

∆n =
∑
i

P(A(n)
i )∆∗

n = ∆∗
n

∑
i

P(A(n)
i ) = ∆∗

nEXn.

So in this case we get the following theorem

Theorem 5.1.2. Suppose that EXn → ∞ and ∆∗
n = o(EXn). Then P(Xn > 0) → 1.

Remark 5.1.3. (Important!) It is rather inconvenient to write out the .(n) every

time: X
(n)
i , A

(n)
i , p

(n)
i ... So in what follows we hide the notation n and for instance

the last claim will read as follows: ”Suppose that EX → ∞ and ∆∗ = o(EX). Then

P(X > 0) → 1.” This is of course completely stupid if we forget that there is a

hidden parameter n. Nevertheless, the parameter n will always be clear from the

context. For instance, if we study the random graph G(n, p(n)) and X is the number

of K4 in the graph then it is clear that actually X = Xn belongs to G(n, p(n)).

5.2 Threshold functions of graph appearance

Let G(n, p) be the random graph on n vertices whose edges appear with probability

p independently of each other. The probability p may depend on n, for instance, it

can be p = p(n) = n−1/2.

Surprisingly, one can see ”all” graphs G(n, p) at the same time as p runs from 0

to 1. For all edges let us pick a random number from the interval [0, 1], then just as

we rotate the frequency finder of a radio we start to increase p. At some point t the

edges with a number less than t will lit up. As we increase t more and more edges

will lit up. At point t = 0 the whole graph is dark (with probability 1, while at t = 1

the whole graph is lit up. At point p we can see G(n, p). This process is called the

evolution.
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What kind of questions can we study? We can for instance ask the probability

that G(n, p) contains a Hamiltonian-cycle or we can seek for the probability that

the graph is a planar graph or the probability that its chromatic number is at most

100. For a fixed n these questions might be very difficult to answer and answers

might be very ugly. In general, we only wish to know the answer as the number

of vertices tends to infinity. In other words, we are seeking limP(G(n, p) ∈ P ) for

some property P like containing Hamiltonian-cycle or not. Actually, we will be even

less ambitious as we only try to determine the so-called threshold function of the

property P .

For a property P a function pt(n) is the threshold function if

lim
n→∞

P(G(n, p(n)) ∈ P ) =

{
1 if p(n)

pt(n)
→ ∞,

0 if p(n)
pt(n)

→ 0.

If the probability of a (sequence of) events converge to 1 then we simply say that

the considered event asymptotically almost surely happens. From the definition of

the threshold function it is clear that being a threshold function is not a uniquely de-

termined function. For instance, if pt(n) is a threshold function then for any positive

constant c the function cpt(n) is also a threshold function. Another observation is

that the definition suggests that we only consider a threshold function if increasing

p(n) also increases P(G(n, p(n)) ∈ P ). This happens if the property P is monotone

increasing, this means that if G has property P then adding edges to G won’t lead

out from P . For instance, if G has a Hamiltonian-cycle and we add some edges then

the obtained graph will have a Hamiltonian-cycle too. If the chromatic number is

at least 100, then no matter how many edges we add the chromatic number will

be at least 100. But for instance, if we consider the planarity of G then we should

study the property that at which p will G(n, p) likely to loose the planarity. This is

a monotone decreasing property.

⋆ ⋆ ⋆

Now let us consider a concrete example: at which p the graph K4 will appear in

G(n, p)?

Theorem 5.2.1. The threshold function of the appearance of K4 is n−2/3.

Remark 5.2.2. We can rephrase the claim as follows: the threshold function of the

property ω(G) ≥ 4 is n−2/3.
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Proof. Let S be a subset of size 4 of V (G), where G = G(n, p) is a random graph.

Let AS be the event that S induces a K4 in G, and let XS be the indicator random

variable of AS. Let X be the number of K4 in G. Then

X =
∑

S⊆V (G)
|S|=4

XS.

Whence

EX =
∑

S⊆V (G)
|S|=4

EXS =

(
n

4

)
p6 ≤ (pn2/3)6

24
.

If p(n)n2/3 →n→∞ 0 then EX → 0 as n→ ∞. Hence

lim
n→∞

P(ω(G) ≥ 4) = 0.

Now suppose that p(n)n2/3 →n→∞ ∞. Then EX → ∞ as n → ∞. We will use

Theorem 5.1.1; since all set of size 4 looks the same way the random variables XS

are symmetric. Note that S ∼ T if |S ∩ T | ≥ 2, otherwise the events AS and AT

are independent since they don’t have a common edge. Let us fix a set S. Then

then there are 6
(
n−2
2

)
= O(n2) sets T that intersects S in 2 elements and there

are 4
(
n−3
1

)
= O(n) sets T intersecting S in 3 vertices. In the former case we have

P(AT |AS) = p5, while in the latter case P(AT |AS) = p3. Then

∆∗ = O(n2p5) +O(np3) = o(n4p6) = o(EX)

since p(n)n−2/3 → ∞. Hence by Theorem 5.1.1 the graph K4 appears asymptotically

almost surely.

Now let us consider the bit more general problem of determining the threshold

function of the appearance of a given graph H. After a quick check of the proof

concerning K4 we see that the value 2/3 comes from the ratio of the vertices and

edges of K4. This may prompt us to believe that this is also the answer for the

general question, i. e., for any graph H the threshold function is n−v(H)/e(H). There

is a minor problem with this idea: in order to make sure that H appears one needs

that all subgraphs H ′ also appears, and it might very easily occur that for some

H ′ the value n−v(H′)/e(H′) is bigger than n−v(H)/e(H). This motivates the following

definition.
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Definition 5.2.3. LetH be a graph with v vertices and e edges. We call the quantity

ρ(H) = e
v
the density of H. We say that a graph H is balanced if for all subgraph H ′

we have ρ(H ′) ≤ ρ(H). The graph H is said to be strictly balanced if for all proper

subgraph H ′ we have ρ(H ′) < ρ(H).

The proof of the next theorem practically does not require any new idea.

Theorem 5.2.4. Let H be a balanced graph with n vertices and e edges. Let PH be

the property that H is a (not necessarily induced) subgraph of a graph G. Then the

threshold function of PH is p = n−v/e.

Proof. For all subsets S of size v let AS be the event that H is a subgraph of G[S].

Then

pe ≤ P(AS) ≤ v!pe.

Let XS be the indicator random variable of AS. Furthermore, set X =
∑

|S|=vXS.

Hence the event that G contains H occurs if and only if X > 0. By the linearity of

expectation we get that

EX =
∑
|S|=v

EXS =

(
n

v

)
P(AS) = Θ(nvpe).

Hence if p(n)ne/v → 0 then EX = o(1), thus X = 0 asymptotically almost surely.

Now suppose that p(n)ne/v → ∞. Then EX → ∞. Let us consider ∆∗. (We can

do it as the events AS are symmetric.). If S ∼ T then 2 ≤ |S ∩ T | ≤ v − 1. Then

∆∗ =
∑
T∼S

P(AT |AS) =
v∑

i=2

∑
|T∩S|=i

P(AT |AS).

Let i be fixed. Then there are
(
v
i

)(
n−v
v−i

)
= O(nv−i) ways to choose a set T intersecting

S in exactly i vertices. The subgraph induced by S ∩ T has i vertices and since H

was balanced, the intersection contains at most i e
v
edges. So there are at least e− i e

v

edges of T not in the intersection with S. Whence

P(AT |AS) = O(pe−i e
v ).

Hence

∆∗ =
v−1∑
i=2

O(nv−ipe−i e
v ) =

v−1∑
i=2

O((nvpe)1−i/v) =
v−1∑
i=2

o(nvpe) = o(EX)

since nvpe → ∞. By Theorem 5.1.1 we get that H appears in G asymptotically

almost surely.
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Next we study the isolated vertices and connectedness of G(n, p).

Theorem 5.2.5. Let ω(n) → ∞. Furthermore, let pℓ(n) = (log n − ω(n))/n and

pu(n) = (log n+ω(n))/n. Then G(n, pℓ(n)) contains an isolated vertex asymptotically

almost surely while G(n, pu(n)) does not contain isolated vertex vertex asymptotically

almost surely.

Proof. First we prove that G(n, pu(n)) does not contain an isolated vertex asymp-

totically almost surely. From now on let p = pu(n). Let X be the number of isolated

vertices, and Xv be the indicator random variable of v being an isolated vertex. Then

X =
∑
v∈V

Xv.

Observe that P(Xv = 1) = (1− p)n−1. We can assume that p ≤ 1/2 (why?). Then

EX =
∑
v∈V

EXv = n(1−p)n−1 =
1

1− p
n(1−p)n ≤ 2ne−pn = 2ne− logn+ω(n) = 2e−ω(n) → 0.

as n→ ∞. Then

P(X = 0) ≥ 1− EX → 1.

Next we show that G(n, pℓ(n)) contains an isolated vertex asymptotically almost

surely. From now on let p = pℓ(n). As before, let X be the number of isolated

vertices, and Xv be the indicator random variable of v being an isolated vertex.

Then X =
∑

v∈V Xv, and P(Xv = 1) = (1− p)n−1. Hence

EX =
∑
v∈V

EXv = n(1− p)n−1 ∼ ne− logn+ω(n) = eω(n) → ∞.

Let us determine EX2.

EX2 =
∑
v∈V

EX2
v + 2

∑
u,v∈V

EXuXv = n(1− p)n−1 + n(n− 1)(1− p)2n−3.

Whence

Var(X) = EX2 − (EX)2 = n(1− p)n−1 + n(n− 1)(1− p)2n−3 − n2(1− p)2(n−1) ≤

≤ n(1−p)n−1+n2(1−p)2n−3−n2(1−p)2(n−1) = n(1−p)n−1+pn2(1−p)2n−3 = EX+
p

1− p
(EX)2
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Thus

P(X = 0) ≤ Var(X)

(EX)2
≤ 1

EX
+

p

1− p
→ 0

since
p

1− p
≤ 2p ≤ 2 log n

n
,

if n is large enough. Hence G(n, pa(n)) contains an isolated vertex asymptotically

almost surely.

Theorem 5.2.6. Let ω(n) → ∞. Furthermore, let pℓ(n) = (log n − ω(n))/n and

pu(n) = (log n + ω(n))/n. Then G(n, pℓ(n)) is disconnected asymptotically almost

surely, while G(n, pu(n)) is connected asymptotically almost surely.

Proof. It is clear from the previous theorem that G(n, pℓ(n)) is disconnected asymp-

totically almost surely since it contains an isolated vertex with high probability. So

we only need to prove that G(n, pu(n)) is connected asymptotically almost surely.

This is stronger than what we proved earlier, namely that it does not contain an iso-

lated vertex. From now on let p = pu(n), and let Xk denote the number of connected

components of size k. Furthermore, let

X =

⌊n/2⌋∑
k=1

Xk.

This is the number of connected components of size at most ⌊n/2⌋. Note that if G is

connected, then X = 0, and if G is disconnected, then X ≥ 1 non-negative integer.

Hence

P(X = 0) ≥ 1− EX.

So we only need to prove that EX → 0 as n → ∞. Let f(k, p) be the probability

that a random graph G(k, p) is connected. For a set S let XS be indicator random

variable that the graph induced by the set S is a connected component of G(n, p).

Then

EXS = P(XS = 1) = f(|S|, p)(1− p)|S|(n−|S|)

since there must be no edge between S and V \ S and the induced subgraph must

be connected. Then

EX = E

 ∑
1≤|S|≤⌊n/2⌋

XS

 =

⌊n/2⌋∑
k=1

(
n

k

)
f(k, p)(1− p)k(n−k).
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Since f(k, p) ≤ 1 we have

EX ≤
⌊n/2⌋∑
k=1

(
n

k

)
(1− p)k(n−k).

We have
⌊n/2⌋∑
k=1

(
n

k

)
(1− p)k(n−k) ≤

⌊n/2⌋∑
k=1

(en
k

)k
e−pk(n−k).

Here one term can be bounded as follows:(en
k

)k
e−pk(n−k) = exp

(
k(1 + log n− log k)− k(n− k)

log n+ ω(n)

n

)
= exp

(
−ω(n)k(n− k)

n

)
· exp

(
k

(
1 +

k

n
log n− log k

))
≤ exp

(
−ω(n)n− 1

n

)
· exp

(
k

(
1 +

k

n
log n− log k

))
≤ exp

(
−ω(n)n− 1

n

)
e−k.

if 300 ≤ k ≤ n/2, and less than some constant C exp
(
−ω(n)n−1

n

)
for 299 ≤ k ≤ 5.

Indeed, if x = k
n
then

2 +
k

n
log n = 2 + x log

k

x
= 2 + x log

1

x
+ x log k ≤ 2 +

1

2
log 2 +

1

2
log k ≤ log k

for k ≥ 300. Then

⌊n/2⌋∑
k=1

(
n

k

)
(1−p)k(n−k) ≤ exp

(
−ω(n)n− 1

n

)
·

(
299∑
k=1

C +
∞∑

k=300

e−k

)
= C ′ exp

(
−ω(n)n− 1

n

)
.

This last expression goes to 0 as n→ ∞. Hence

P(G(n, p) is not connected) → 0.

We are done.

Remark 5.2.7. Another way to estimate the sum

⌊n/2⌋∑
k=1

(
n

k

)
(1− p)k(n−k)

is the following.

⌊n/2⌋∑
k=1

(
n

k

)
(1−p)k(n−k) ≤

⌊n/2⌋∑
k=1

(en
k

)k
e−pk(n−k) =

⌊n/2⌋∑
k=1

(en
k
epke−pn

)k
=

⌊n/2⌋∑
k=1

(
e1−ω(n) e

pk

k

)k

.
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The function epx/x is convex on the interval [0,∞) for arbitrary p. In particular,

it takes its maximum at one of the end points on the interval [1, n/2]. At 1 this

function is at most e. At n/2 we can assume that ω(n) ≤ log n and we get that the

value of the function is at most 2. So on the whole interval it is at most e. Hence

⌊n/2⌋∑
k=1

(
e1−ω(n) e

pk

k

)k

≤
⌊n/2⌋∑
k=1

(
e2−ω(n)

)k ≤ e2−ω(n)

1− e2−ω(n)
→ 0.
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6. Lovász Local Lemma

In the previous chapter about the second moment method we have seen that some

crude information about the dependence of the random variables can help a lot. In

combinatorial problems it almost never happens that we have completely indepen-

dent random variables, but in many cases it turns out that each random variable is

independent of all others, but a small number of exceptions. This turns out to be

almost as good as complete independence. At least we can prove statements where

certain probabilities are exponentially small, but luckily they are positive. In this

chapter we will study such a tool, this is the so called Lovász local lemma.

6.1 Lovász local lemma

Theorem 6.1.1. (Lovász local lemma, general version) Let B1, . . . , Bn be events

in an arbitrary probability space. The directed graph D = (V,E) with vertex set

V = {1, 2, . . . , n} is the dependence graph of the events B1, . . . , Bn if for all 1 ≤ i ≤ n

the event Bi is mutually independent from the events {Bj | (i, j) /∈ E}. Assume that

the directed graph D = (V,E) is the dependence graph of the events B1, . . . , Bn and

there exist real numbers x1, . . . , xn satisfying 0 ≤ xi < 1 and

P(Bi) ≤ xi
∏

(i,j)∈E

(1− xj)

for all 1 ≤ i ≤ n. Then

P

(
n⋂

i=1

Bi

)
≥

n∏
i=1

(1− xi) > 0.

Remark 6.1.2. We can think of the events B1, . . . , Bn as bad events. We would like

to avoid all of them, so we need that with positive probability none of them occurs,

that is,

P

(
n⋂

i=1

Bi

)
> 0.
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Proof. Let S ⊆ {1, 2, . . . , n}, |S| = s. First we show by induction on s that for

arbitrary i /∈ S we have

P

(
Bi

∣∣∣∣∣ ⋂
j∈S

Bj

)
≤ xi.

This is trivial for s = 0. Assume that we have proved the statement for all s′ < s,

we show that the statement is also true for s. Let S1 = {j ∈ S | (i, j) ∈ E} and

S2 = {j ∈ S | (i, j) /∈ E}. Then

P

(
Bi

∣∣∣∣∣ ⋂
j∈S

Bj

)
=

P
(
Bi ∩

(⋂
j∈S1

Bj

) ∣∣ ⋂
t∈S2

Bt

)
P
(⋂

j∈S1
Bj

∣∣ ⋂
t∈S2

Bt

) .

First we estimate the enumerator of the fraction using that Bi is mutually indepen-

dent from the events {Bt | t ∈ S2}.

P

(
Bi ∩

(⋂
j∈S1

Bj

) ∣∣∣∣∣ ⋂
t∈S2

Bt

)
≤ P

(
Bi

∣∣∣∣∣ ⋂
t∈S2

Bt

)
= P(Bi) ≤ xi

∏
(i,j)∈E

(1− xj.)

To estimate the denominator we use the induction hypothesis. Let S1 = {j1, . . . , jr}.
If r = 0 then the denominator is 1 and the statement immediately follows. If r ≥ 1

then we can use the inductive hypothesis

P

(
Bj1 ∩Bj2 ∩ · · · ∩Bjr

∣∣∣∣∣ ⋂
t∈S2

Bt

)
=

=

(
1− P

(
Bj1

∣∣∣∣∣ ⋂
t∈S2

Bt

))
·

(
1− P

(
Bj2

∣∣∣∣∣ Bj1 ∩
⋂
t∈S2

Bt

))
· · ·

(
1− P

(
Bjr

∣∣∣∣∣ Bj1 ∩ · · · ∩Bjr−1 ∩

(⋂
t∈S2

Bt

)))
≥

≥ (1− xj1)(1− xj2) . . . (1− xjr).

Putting together the estimates of the enumerator and the denominator we get the

required statement. From this the statement of the theorem immediately follows:

P

(
n⋂

i=1

Bi

)
= (1− P(B1))

(
1− P

(
B2

∣∣ B1

))
· · ·

(
1− P

(
Bn

∣∣∣∣∣
n−1⋂
i=1

Bi

))
≥

n∏
i=1

(1−xi).

Hence we have proved the theorem.
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Theorem 6.1.3. (Lovász local lemma, symmetric form) Let B1, . . . , Bn be events

in an arbitrary probability space. Assume that for all i the event Bi is mutually

independent from all other, but at most d events. Assume that P(Bi) ≤ p and

p ≤ 1

e(d+ 1)
,

where e = 2, 71... is the base of the natural logarithm. Then

P

(
n⋂

i=1

Bi

)
> 0.

Proof. If d = 0 then the statement is trivial. If d ≥ 1 we can apply the statement of

the previous theorem for the dependence graph of the events B1, . . . , Bn, where for

all i we have |{j | (i, j) ∈ E}| ≤ d. Let xi =
1

d+1
< 1. Since(

1− 1

d+ 1

)d

≥ 1

e

we have

P(Bi) ≤ xi
∏

(i,j)∈E

(1− xj).

Therefore,

P

(
n⋂

i=1

Bi

)
≥

n∏
i=1

(1− xi) > 0.

6.2 2-colorings of hypergraphs

Theorem 6.2.1. Suppose that all edge of the hypergraph H = (V,E) has at least

k vertices and all of them intersects at most d others. If e(d + 1) ≤ 2k−1, then it

is possible to color the vertices of the hypergraph with two colours without resulting

monochromatic edge.

Proof. Let us color each vertex with blue and red with probability 1/2−1/2 indepen-

dently of each other. Let Bf be the event that the edge f is monochromatic. Clearly,

P(Bf ) = 2/2k = 1/2k−1. For all f ∈ E(H) the event Bf is mutually independent

of all events Bf ′ if f ′ does not intersect f . Hence all event is mutually independent

of all others, but d events. Since P(Bf ) =
1

2k−1 ≤ 1
e(d+1)

we have P(
⋂n

i=1Bi) > 0 by

the Lovász local lemma. Hence with positive probability there exists a 2-coloring

without monochromatic edge.
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6.3 Ramsey-numbers revisited

Theorem 6.3.1. (a) If

e

((
k

2

)(
n− 2

k − 2

)
+ 1

)
21−(

k
2) < 1

then we have R(k, k) > n.

(b) We have

R(k, k) >

√
2

e
(1 + o(1))k2k/2.

Proof. Let us colour each edge of Kn to red or blue with probability 1/2− 1/2. Let

S ⊂ {1, 2, . . . , n} for which |S| = k, and let BS be the event that each edge induced

by the set S get the same colour. Then

P(BS) =
2

2(
k
2)

=
1

2(
k
2)−1

.

The event BS is mutually independent from all event BS′ for which the sets S and S ′

have at most one common vertex. Thus the degree of BS in the dependence digraph

is at most (
k

2

)(
n− 2

k − 2

)
.

(Note that if k ≥ 4 then we overcounted by counting those sets S ′ more times that

have intersection of size at least 3, but this is not a problem as we only need an

upper bound.) According to the condition of the theorem we have

P(BS) ≤
1

e(d+ 1)
.

Hence, by the Lovász local lemma we have

P

 ⋂
|S|=k

BS

 > 0.

In other words, with positive probability there exists a coloring such that there is no

monochromatic subset of size k. Hence R(k, k) > n.

The analysis in part (b) is left to the Reader.
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6.4 Cycles in directed graphs

Theorem 6.4.1 (Alon and Linial [3]). Let D = (V,E) be a simple directed graph in

which the minimal out-degree is δ and the maximal in-degree is ∆. If

e(∆(δ + 1) + 1)

(
1− 1

k

)δ

< 1,

then D contains a directed cycle whose length is divisible by k.

Proof. We can assume that all out-degree are δ, otherwise we consider a subgraph

of D. Let f : V → {0, 1, . . . , k − 1} be a random coloring of the vertices where we

choose each f(v) independently from each other. For all v ∈ V let Bv be the event

that there exists no u ∈ V such that (v, u) ∈ E and f(u) ≡ f(v)+ 1 (mod k). Then

P(Bv) = (1−1/k)δ. Note that Bv is mutually independent from all events, but those

events Bu for which

N+(v) ∩ ({u} ∪N+(u)) ̸= ∅,

where N+(u) = {w ∈ V | (u,w) ∈ E}. The number of such events is at most

∆(δ+1). By the condition e(∆(δ+1)+1)(1− 1
k
)δ < 1 we can apply the Lovász local

lemma. Hence P(∩v∈VBv) > 0. Therefore there exists an f : V → {0, 1, . . . , k − 1}
coloring such that for all v ∈ V there exists a u ∈ V such that (v, u) ∈ E and

f(u) ≡ f(v) + 1 (mod k).

Now let us pick a vertex v and start a walk from v by always stepping to a new

vertex that has 1-bigger f -value modulo k then the previous vertex. At some point

we have to arrive to an already visited vertex. Then we have found a cycle whose

length is divisible by k.
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7. Correlation Inequalities

In politics it is a common wisdom that if you cannot stop something then stand

to the lead of it. Mathematicians would say that if you can’t prevent something

then use it to your own purposes. In the previous chapters we have seen how we

can conquer more and more of independence. But, alas, dependence happens. On

the other hand, one might secretly hope that the arising correlation can be used

efficiently. In this chapter we will see how to prove correlation inequalities and use

them.

7.1 Positive correlation

Definition 7.1.1. For x, y ∈ {0, 1}n let x ∨ y be the vector for which (x ∨ y)i =

max(xi, yi), and let x ∧ y be the vector for which (x ∧ y)i = min(xi, yi).

Theorem 7.1.2 (Ahlswede and Daykin [1]). Let f1, f2, f3, f4 : {0, 1}n → R+ satis-

fying the inequality

f1(x)f2(y) ≤ f3(x ∨ y)f4(x ∧ y)

for all x, y ∈ {0, 1}n. Let
Fi =

∑
x∈{0,1}n

fi(x)

for i = 1, 2, 3, 4. Then

F1 · F2 ≤ F3 · F4.

Proof. We prove the statement by induction on n. For n = 1 the condition of the

theorem gives that

f1(0)f2(0) ≤ f3(0)f4(0).

f1(0)f2(1) ≤ f3(1)f4(0).

f1(1)f2(0) ≤ f3(1)f4(0).
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f1(1)f2(1) ≤ f3(1)f4(1).

We need to prove that

(f1(0) + f1(1))(f2(0) + f2(1)) ≤ (f3(0) + f3(1))(f4(0) + f4(1)).

If f3(1) = 0 or f4(0) = 0 then f3(1)f4(0) ≤ f3(0)f4(1) and the claim is trivially true:

(f1(0)+f1(1))(f2(0)+f2(1)) ≤ f3(0)f4(0)+2f3(1)f4(0)+f3(1)f4(1) ≤ (f3(0)+f3(1))(f4(0)+f4(1)).

So we can assume that f3(1) ̸= 0 and f4(0) ̸= 0. Then

(f3(0) + f3(1))(f4(0) + f4(1)) ≥
(
f1(0)f2(0)

f4(0)
+ f3(1)

)(
f4(0) +

f1(1)f2(1)

f3(1)

)
.

So it would be enough to prove that(
f1(0)f2(0)

f4(0)
+ f3(1)

)(
f4(0) +

f1(1)f2(1)

f3(1)

)
≥ (f1(0) + f1(1))(f2(0) + f2(1)).

This is equivalent with

(f1(0)f2(0)+f3(1)f4(0))(f3(1)f4(0)+f1(1)f2(1)) ≥ f3(1)f4(0)(f1(0)+f1(1))(f2(0)+f2(1)).

This is in turn equivalent with

(f3(1)f4(0)− f1(0)f2(1))(f3(1)f4(0)− f1(1)f2(0)) ≥ 0

which is true by the assumptions of the theorem. This proves the case n = 1.

Now suppose that the claim is true till n− 1 and we wish to prove it for n. Set

f ′
i(x) : {0, 1}n−1 → R+ for i = 1, 2, 3, 4 as follows:

f ′
i(x) = fi(x, 0) + fi(x, 1).

First we show that f ′
i satisfies the inequality

f ′
1(x)f

′
2(y) ≤ f ′

3(x ∨ y)f ′
4(x ∧ y)

for all x, y ∈ {0, 1}n−1. This is of course true: for a fixed x, y ∈ {0, 1}n−1 let us apply

the case n = 1 to the functions

g1(u) = f1(x, u) g2(u) = f2(y, u) g3(u) = f3(x ∨ y, u) g3(u) = f4(x ∧ y, u),
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where u ∈ {0, 1}. Then the functions gi satisfy

g1(u1)g2(u2) ≤ g3(u1 ∨ u2)g4(u1 ∧ u2)

for all u1, u2 ∈ {0, 1} by the assumption on f . By the case n = 1 we know that

(g1(0) + g1(1))(g2(0) + g2(1)) ≤ (g3(0) + g3(1))(g4(0) + g4(1)).

In other words,

f ′
1(x)f

′
2(y) ≤ f ′

3(x ∨ y)f ′
4(x ∧ y)

for all x, y ∈ {0, 1}n−1. Then by induction we get that for F ′
i =

∑
x∈{0,1}n−1 fi(x) we

have

F ′
1 · F ′

2 ≤ F ′
3 · F ′

4.

But of course F ′
i = Fi whence

F1 · F2 ≤ F3 · F4.

Theorem 7.1.3. Let f1, f2, f3, f4 : {0, 1}n → R+ satisfying the inequality

f1(x)f2(y) ≤ f3(x ∨ y)f4(x ∧ y)

for all x, y ∈ {0, 1}n. Let f ′
1, f

′
2, f

′
3, f

′
4 : {0, 1}k → R+ be defined by

f ′
i(x) =

∑
u∈{0,1}n−k

fi(x, u).

Then for all x, y ∈ {0, 1}k we have

f ′
1(x)f

′
2(y) ≤ f ′

3(x ∨ y)f ′
4(x ∧ y)

Proof. This immediately follows from Theorem 7.1.2. For fixed x, y ∈ {0, 1}k define

g1, g2, g3, g4 : {0, 1}n−k → R+

g1(u) = f1(x, u), g2(u) = f2(y, u), g3(u) = f3(x ∨ y, u), g4(u) = f4(x ∧ y, u).

Then for any u, v ∈ {0, 1}n−k we have

g1(u)g2(v) ≤ g3(u ∨ v)g4(u ∧ v)

39



by the assumption on the functions f1, f2, f3, f4. Then for

f ′
i(x) = Gi =

∑
u∈{0,1}n−k

gi(u) =
∑

u∈{0,1}n−k

fi(x, u)

we have

f ′
1(x)f

′
2(y) = G1G2 ≤ G3G4 = f ′

3(x ∨ y)f ′
4(x ∧ y).

Definition 7.1.4. For x, y ∈ {0, 1}n we say that x ≥ y if for all i ∈ [n] we have

xi ≥ yi.

A function f : {0, 1}n → R+ is monotone increasing if f(x) ≥ f(y) for all x ≥ y

and it is monotone decreasing if f(x) ≤ f(y) for all x ≥ y.

In general, for a poset (or lattice) L a function f : L→ R+ is monotone increasing

if f(x) ≥ f(x) for all x ≥L y and it is monotone decreasing if f(x) ≤ f(y) for all

x ≥L y.

Theorem 7.1.5 (Fortuin, Kasteleyn, Ginibre [12]). A function µ : {0, 1}n → R+ is

log-supermodular if

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y)

for all x, y ∈ {0, 1}n. Then for a log-supermodular µ : {0, 1}n → R+ and monotone

increasing (decreasing) functions f, g : {0, 1}n → R+ we have ∑
x∈{0,1}n

µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

Furthermore, if f : {0, 1}n → R+ is monotone increasing and g : {0, 1}n → R+ is

monotone decreasing then ∑
x∈{0,1}n

µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≥

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

Proof. First suppose that both f and g are monotone increasing. Let us apply

Theorem 7.1.2 for the following theorems:

f1(x) = µ(x)f(x), f2(x) = µ(x)g(x), f3(x) = µ(x)f(x)g(x), f4(x) = µ(x).

We need to check that

f1(x)f2(y) ≤ f3(x ∨ y)f4(x ∧ y)
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for all x, y ∈ {0, 1}n. This is indeed true:

f1(x)f2(y) = µ(x)f(x)µ(y)g(y)

≤ µ(x ∨ y)µ(x ∧ y)f(x)g(y)

≤ µ(x ∨ y)µ(x ∧ y)f(x ∨ y)g(x ∨ y)

= f3(x ∨ y)f4(x ∧ y).

In the first inequality we used the log-supermodularity of µ, and in the second in-

equality we used that both f and g are monotone increasing. Then by Theorem 7.1.2

we have F1 · F2 ≤ F3 ≤ F4, i. e., ∑
x∈{0,1}n

µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

If f and g are both monotone decreasing then set

f1(x) = µ(x)f(x), f2(x) = µ(x)g(x), f3(x) = µ(x), f4(x) = µ(x)f(x)g(x).

Again we need to check that

f1(x)f2(y) ≤ f3(x ∨ y)f4(x ∧ y)

for all x, y ∈ {0, 1}n. This is indeed true:

f1(x)f2(y) = µ(x)f(x)µ(y)g(y)

≤ µ(x ∨ y)µ(x ∧ y)f(x)g(y)

≤ µ(x ∨ y)µ(x ∧ y)f(x ∧ y)g(x ∧ y)

= f3(x ∨ y)f4(x ∧ y).

From this we can conclude again that ∑
x∈{0,1}n

µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

If f is monotone increasing, and g is monotone decreasing then letM = maxx∈{0,1}n g(x),

and consider the function g′(x) =M − g(x). Then g′(x) ≥ 0 and monotone increas-

ing. Whence ∑
x∈{0,1}n

µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g′(x)

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)g′(x)

 ∑
x∈{0,1}n

µ(x)

 .
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By writing the definition of g(x) =M − g′(x) into it we get that ∑
x∈{0,1}n

µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)(M − g(x))

 ≤

 ∑
x∈{0,1}n

µ(x)f(x)(M − g(x))

 ∑
x∈{0,1}n

µ(x)

 .

After subtracting M(
∑
µ(x))(

∑
µ(x)f(x)) and multiplying with −1 we get that ∑

x∈{0,1}n
µ(x)f(x)

 ∑
x∈{0,1}n

µ(x)g(x)

 ≥

 ∑
x∈{0,1}n

µ(x)f(x)g(x)

 ∑
x∈{0,1}n

µ(x)

 .

Remark 7.1.6. It is worth considering µ as a measure, and suppose that it is a

log-supermodular probability measure. Then the above theorem says that

EµfEµg ≤ Eµfg

for monotone increasing functions f and g.

Theorem 7.1.7. Let L be a distributive lattice. A function µ : L → R+ is log-

supermodular if

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y)

for all x, y ∈ L. For a log-supermodular µ : L → R+ and monotone increasing

(decreasing) functions f, g : L→ R+ we have(∑
x∈L

µ(x)f(x)

)(∑
x∈L

µ(x)g(x)

)
≤

(∑
x∈L

µ(x)f(x)g(x)

)(∑
x∈L

µ(x)

)
.

Furthermore, if f : L → R+ is monotone increasing and g : L → R+ is monotone

decreasing then(∑
x∈L

µ(x)f(x)

)(∑
x∈L

µ(x)g(x)

)
≥

(∑
x∈L

µ(x)f(x)g(x)

)(∑
x∈L

µ(x)

)
.

Proof. This theorem follows from Theorem 7.1.5 since every distributive lattice L is

a sublattice of some {0, 1}n. So all we need to do is to define µ on {0, 1}n \L to be 0,

and to extend f and g in a monotone increasing way. (This last step is only needed

formally since µ(x)f(x), µ(x)g(x), µ(x)f(x)g(x) are all 0 anyway for x ∈ {0, 1}n \L.)
The extended µ will remain log-supermodular since µ(x)µ(y) ̸= 0 then x, y ∈ L and

then x ∨ y, x ∧ y ∈ L so µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y), and if µ(x)µ(y) = 0 then the

inequality holds true trivially.
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In the next few results we give examples of various log-supermodular measures.

Theorem 7.1.8. Assume that the function µ : {0, 1}n → R+ is log-supermodular.

Then the function µ′ : {0, 1}k → R+ defined by

µ′(x) =
∑

u∈{0,1}n−k

µ(x, u)

is also log-supermodular.

Proof. This theorem is an immediate application of Theorem 7.1.3 applied to

f1 = f2 = f3 = f4 = µ.

Theorem 7.1.9. For probabilities p1, . . . , pn let

Pp(A) =
∏
i∈A

pi
∏
j /∈A

(1− pj).

Let A,B ⊆ 2[n] be monotone increasing, and C,D ⊆ 2[n] be monotone decreasing set

families. For a set family S set

Pp(S) =
∑
S∈S

Pp(S).

Then we have

Pp(A ∩ B) ≥ Pp(A) · Pp(B),

Pp(C ∩ D) ≥ Pp(C) · Pp(D),

Pp(A ∩ C) ≤ Pp(A) · Pp(C).

Proof. We can associate the characteristic vector 1A ∈ {0, 1}n with a set A. Let

µ(x) =
n∏

i=1

pxi
i (1− pi)

1−xi .

Then Pp(A) = µ(1A). Then

µ(x)µ(y) = µ(x ∨ y)µ(x ∧ y)

or equivalently Pp(A)Pp(B) = Pp(A ∪ B)Pp(A ∩ B). Furthermore, let f be the

characteristic functions of the family of sets A, i. e., f(1A) = 1 if A ∈ A and 0
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otherwise. Similarly, let g be the characteristic functions of the family of sets B.
Then f and g are monotone increasing functions. The inequality

Pp(A ∩ B) ≥ Pp(A) · Pp(B)

is simply Theorem 7.1.5 applied to µ, f and g. The other parts of the theorem follow

similarly.

Theorem 7.1.10. Given a graph G on the vertex set [n], and a parameter β > 0

with a vector B = (B1, . . . , Bn). For an x = (x1, . . . , xn) ∈ {−1, 1}n set

Pβ,B(x) =
1

Z
exp

β ∑
(i,j)∈E(G)

xixj +
n∑

i=1

Bixi

 ,

where Z is some normalizing constant. For vectors x and y let (x∧ y)i = min(xi, yi)

and (x ∨ y)i = max(xi, yi). Then we have

Pβ,B(x) · Pβ,B(y) ≤ Pβ,B(x ∧ y) · Pβ,B(x ∨ y).

Proof. Clearly, the statement is equivalent withβ ∑
(i,j)∈E(G)

xixj +
n∑

i=1

Bixi

+

β ∑
(i,j)∈E(G)

yiyj +
n∑

i=1

Biyi

 ≤

≤

β ∑
(i,j)∈E(G)

min(xi, yi)min(xj, yj) +
n∑

i=1

Bi min(xi, yi)


+

β ∑
(i,j)∈E(G)

max(xi, yi)max(xj, yj) +
n∑

i=1

Bi max(xi, yi)

 .

It is enough to prove the statement term by term. Note that xi + yi = min(xi, yi) +

max(xi, yi) so we only need to prove that

xixj + yiyj ≤ min(xi, yi)min(xj, yj) + max(xi, yi)max(xj, yj).

If xi ≤ yi and xj ≤ yj then this statement holds true with equality. Of course, the

same is true if xi ≥ yi and xj ≥ yj. If xi ≤ yi and xj ≥ yj then we need to prove

that

xixj + yiyj ≤ xiyj + xjyi
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which is equivalent with

(xi − yi)(yj − xj) ≥ 0

which is true by assumption. Again the same is true if xi ≥ yi and xj ≤ yj.

Theorem 7.1.11. Let G = (A,B,E) be a bipartite graph, and let λ ≥ 0. Let I(G)
be the set of independent sets of G. Let I be a random independent set of G such

that for an independent set I of G we have

Pλ(I = I) =
λ|I|

I(G, λ)

where

I(G, λ) =
∑
I

λ|I|.

Then for all u, v ∈ A we have

Pλ[u, v ∈ I] ≥ Pλ[u ∈ I]Pλ[v ∈ I],

and for u ∈ A and v ∈ B we have

Pλ[u, v ∈ I] ≤ Pλ[u ∈ I]Pλ[v ∈ I].

Proof. Consider the following function µ : {0, 1}A∪B:

µ(x, y) = exp

(
ln(λ)

(∑
u∈A

xu +
∑
v∈B

(1− yv)

)) ∏
(u,v)∈E(G)

(1− xu(1− yv)).

First we show the connection between µ and Pλ. For (x, y) ∈ {0, 1}A∪B set

S = {u ∈ A | xu = 1} ∪ {v ∈ B | yv = 0}.

Note that if S is not an independent set then there exists a (u, v) ∈ E(G) such that

xu = 1, yv = 0. Then 1− xu(1− yv) = 0 and µ(x, y) = 0. If S is an independent set

for all (u, v) ∈ E(G) we have 1− xu(1− yv) = 1, and

exp

(
ln(λ)

(∑
u∈A

xu +
∑
v∈B

(1− yv)

))
= λ|S|.

So up to the normalization constant I(G, λ) the function µ and Pλ are the same.

Next we show that µ(x, y) is log-supermodular. It is clear that if (x, y) and (x′, y′)

are two vectors then(∑
u∈A

xu +
∑
v∈B

(1− yv)

)
+

(∑
u∈A

x′u +
∑
v∈B

(1− y′v)

)
=
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=

(∑
u∈A

min(xu, x
′
u) +

∑
v∈B

(1−min(yv, y
′
v))

)
+

(∑
u∈A

max(xu, x
′
u) +

∑
v∈B

(1−max(yv, y
′
v))

)
.

So we only need to prove that

(1−xu(1−yv))(1−x′u(1−y′v)) ≤ (1−min(xu, x
′
u)(1−min(yv, y

′
v))(1−max(xu, x

′
u)(1−max(yv, y

′
v)).

One can do it by checking 16 cases, but it is possible to speed up the checking by

some observations. The right hand side is non-negative so we only need to exclude

the cases where the left hand side is 1 (and the right hand side is 0). If xu = x′u = 1

then yv = y′v = 0 and then the right hand side is 1. If xu = x′u = 0 then the right

hand side is again 1. Similarly, if yv = y′v = 0 then xu = x′u = 0, or yv = y′v = 1, then

right hand side is again 1. So we only need to check when one of xu and x′u is 1, the

other 0, and one of yv and y′v is 1, the other 0. By symmetry we can assume that

xu = 0, x′u = 1: if yv = 0, y′v = 1 then both sides is 1, and if yv = 1, y′v = 0 then the

left hand side is 0, but the right hand side is still 1. Hence the inequality is indeed

true.

Finally, fix a u and v as in the statement in the theorem. Now we can apply

Theorem 7.1.5 in the first case to the functions

µ(x, y), f(x, y) = xu, g(x, y) = xv.

Clearly, ∑
(x,y)

µ(x, y)xuxv = I(G, λ)Pλ[u, v ∈ I].

In the second case we can apply Theorem 7.1.5 to the functions.

µ(x, y), f(x, y) = xu, g(x, y) = 1− yv.

In the first case, both f and g are monotone increasing, in the second case f is

monotone increasing and g is monotone decreasing. After dividing by I(G, λ)2 we

get that for all u, v ∈ A we have

Pλ[u, v ∈ I] ≥ Pλ[u ∈ I]Pλ[v ∈ I],

and for a u ∈ A and v ∈ B we have

Pλ[u, v ∈ I] ≤ Pλ[u ∈ I]Pλ[v ∈ I].
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8. Poisson paradigm

In the chapter about the Lovász local lemma we have seen that we can give a lower

bound for the probability P
(⋂

i∈I Bi

)
if the bad events Bi have sufficiently small

probabilities, and all bad events are mutually independent of every other events, but

a small number of exceptions. If the bad events were independent then we would

expect that the number X of occuring bad events is close to a Poisson distribution.

One might hope that this is true in more generality, that is, if we allow some small

dependence. This is the content of this chapter. In the first section we study the so-

called Janson’s inequalities that –at least for a special, but important setup– provide

such a result: P(X = 0) is close to e−µ, the probability of a Poisson distribution

with parameter µ taking value 0. Then we study another tool to prove that certain

distributions converge to a Poisson distribution.

8.1 Janson’s inequalities

Setup. Let Ω be a fixed set and let R be a random subset of Ω by choosing r ∈ R

with probability pr mutually independently of each other. Let (Ai)i∈I be subsets of

Ω for some index set I. Let Bi be the event that Ai ⊆ R. Let Xi be the indicator

random variable for the event Bi. Set

X =
∑
i∈I

Xi.

It is, of course, the number of Ai ⊆ R. So the events ∩i∈IBi and X = 0 are identical.

For i, j ∈ I we say that i ∼ j if Ai ∩Aj ̸= ∅, not that if i ̸∼ j then this is consistent

with our previous notation that Bi and Bj are independent. Let

∆ =
∑
i∼j

P (Bi ∩Bj) ,

where the sum is over all ordered pairs, so ∆/2 is the same sum for unordered pairs.

This notation is again consistent with the notation introduced in the chapter on the
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second moment method. Set

M =
∏
i∈I

P
(
Bi

)
.

This would be the probability of ∩i∈IBi if the events Bi were independent. Finally,

set

µ = EX =
∑
i∈I

P(Bi).

Now we are ready to state Janson’s inequalities.

Theorem 8.1.1 (Janson inequality [14]). Let (Bi)i∈I ,M,∆, µ be as above, and as-

sume that P(Bi) ≤ ε for all i ∈ I. Then

M ≤ P

(⋂
i∈I

Bi

)
≤M exp

(
1

1− ε
· ∆
2

)
.

Furthermore,

P

(⋂
i∈I

Bi

)
≤ exp

(
−µ+

∆

2

)
.

Theorem 8.1.2 (Extended Janson inequality). Let (Bi)i∈I ,M,∆, µ be as above, and

further assume that ∆ ≥ µ. Then

P

(⋂
i∈I

Bi

)
≤ e−µ2/2∆.

Remark 8.1.3. Note that

M =
∏
i∈I

P
(
Bi

)
=
∏
i∈I

(1− P(Bi)) ≤
∏
i∈I

e−P(Bi) = e−µ.

This shows that two upper bounds in Theorem 8.1.1 are not really different in the

important case when ε → 0 as the hidden parameter n → ∞. In fact, M ∼ e−µ in

the case when ε = o(1), mε2 = o(1) and ∆ = o(1). To see this let us introduce the

function κ(x) for which

1− x = e−x+κ(x)

for x ∈ [0, 1). Then κ(x) ≤ 0, monotone decreasing function, and for x ≤ 1/2 we

have κ(x) ≥ −x2. Hence

M =
∏
i∈I

P
(
Bi

)
=
∏
i∈I

(1− P(Bi)) =
∏
i∈I

e−P(Bi)+κ(P(Bi)) = e−µ exp

(∑
i∈I

κ(P(Bi))

)
.
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Here ∣∣∣∣∣∑
i∈I

κ(P(Bi))

∣∣∣∣∣ ≤ mκ(ε) ≤ mε2

if ε ≤ 1/2. Since ∆ = o(1) we get that both the upper and lower bound is e−µ(1 +

o(1)), that is,

P

(⋂
i∈I

Bi

)
= e−µ(1 + o(1))

in this case.

Proof of Theorem 8.1.1. First let us prove that

P

(
Bi

∣∣∣∣ ⋂
j∈J

Bj

)
≤ P(Bi)

for J ⊂ I with i /∈ J . Using the definition of the conditional probability this is

equivalent with

P

(
Bi ∩

(⋂
j∈J

Bj

))
≤ P(Bi)P

(⋂
j∈J

Bj

)
.

Observe that Bi is an increasing event and ∩j∈JBj is a decreasing event, so we can

use the FKG correlation inequality to obtain the above inequality.

It is also true that

P

(
Bi

∣∣∣∣ Bk ∩

(⋂
j∈J

Bj

))
≤ P(Bi|Bk)

for J ⊂ I with i, k /∈ J . This inequality follows from the first one since conditioning

on Bk is simply equivalent with assuming that pr = P(r ∈ R) = 1 for all r ∈ Ak.

Next we prove the lower bound. Let I = {1, 2, . . . ,m}. Since

P

(
Bi

∣∣∣∣ ⋂
1≤j<i

Bj

)
≤ P(Bi)

we have

P

(
Bi

∣∣∣∣ ⋂
1≤j<i

Bj

)
≥ P(Bi).

Hence

P

(⋂
i∈I

Bi

)
=

m∏
i=1

P

(
Bi

∣∣∣∣ ⋂
1≤j<i

Bj

)
≥

m∏
i=1

P(Bi).
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We are done.

Next we prove the upper bound. First observe that for any event A,B,C we have

P(A|B ∩ C) ≥ P(A ∩B|C)

by using the definition of the conditional probability and that P(C) ≥ P (B ∩ C)

trivially holds true. For a fixed i ∈ I let us apply it as follows:

A = Bi B =
⋂
j∼i
j<i

Bj C =
⋂
j ̸∼i
j<i

Bj.

Then

P

(
Bi

∣∣∣∣ ⋂
1≤j<i

Bj

)
= P(A|B∩C) ≥ P(A∩B|C) = P(A|C)P(B|A∩C) = P(A)P(B|A∩C)

In the above computation, in the second step we can use the definition of the condi-

tional probability, and in the third step we used that Bi is independent of C. Next

we bound P(B|A ∩ C). We have

P(B|A ∩ C) ≥ 1−
∑
j∼i
j<i

P(Bj|A ∩ C) = 1−
∑
j∼i
j<i

P(Bj|Bi ∩ C) ≥ 1−
∑
j∼i
j<i

P(Bj|Bi),

where in the last step we used the correlation inequality established at the beginning

of the proof. Putting together the last two inequalities we get that

P

(
Bi

∣∣∣∣ ⋂
1≤j<i

Bj

)
≥ P(Bi)−

∑
j∼i
j<i

P(Bj ∩Bi).

Taking the complement event we get that

P

(
Bi

∣∣∣∣ ⋂
1≤j<i

Bj

)
≤ P(Bi) +

∑
j∼i
j<i

P(Bj ∩Bi).

Now we have only some algebraic manipulations left to do. Since P(Bi) ≥ 1− ε we

get that

P(Bi) +
∑
j∼i
j<i

P(Bj ∩Bi) ≤ P(Bi)

1 +
1

1− ε

∑
j∼i
j<i

P(Bj ∩Bi)

 .
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Furthermore, since 1 + x ≤ ex we get that

P(Bi)

1 +
1

1− ε

∑
j∼i
j<i

P(Bj ∩Bi)

 ≤ P(Bi) exp

 1

1− ε

∑
j∼i
j<i

P(Bj ∩Bi)

 .

Hence

P

(
Bi

∣∣∣∣ ⋂
1≤j<i

Bj

)
≤ P(Bi) exp

 1

1− ε

∑
j∼i
j<i

P(Bj ∩Bi)

 .

Multiplying together these inequalities for all 1 ≤ i ≤ m we get that

P

(⋂
i∈I

Bi

)
≤M exp

(
1

1− ε
· ∆
2

)
.

To prove the second upper bound we use the inequalities:

P

(
Bi

∣∣∣∣ ⋂
1≤j<i

Bj

)
≤ 1−P(Bi)+

∑
j∼i
j<i

P(Bj∩Bi) ≤ exp

−P(Bi) +
∑
j∼i
j<i

P(Bj ∩Bi)

 ,

and by multiplying together these inequalities for all 1 ≤ i ≤ m we get that

P

(⋂
i∈I

Bi

)
≤ exp

(
−µ+

∆

2

)
.

Next we prove the extended Janson’s inequality.

Proof of Theorem 8.1.2. The second upper bound of Theorem 8.1.1 can be rewritten

as follows:

− ln

(
P

(⋂
i∈I

Bi

))
≥
∑
i∈I

P(Bi)−
1

2

∑
i∼j

P(Bi ∩Bj).

Of course, this is true for any S ⊆ I:

− ln

(
P

(⋂
i∈S

Bi

))
≥
∑
i∈S

P(Bi)−
1

2

∑
i∼j

i,j∈S

P(Bi ∩Bj).

Now let us apply it to a random subset S by choosing an i ∈ S with probability p,

where p is chosen later. Then

E

(
− ln

(
P

(⋂
i∈S

Bi

)))
≥ E

(∑
i∈S

P(Bi)

)
− 1

2
E

∑
i∼j

i,j∈S

P(Bi ∩Bj)

 = pµ− p2
∆

2
.
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Let p = µ
∆
. This is at most 1 by the condition of the theorem. Hence

E

(
− ln

(
P

(⋂
i∈S

Bi

)))
≥ pµ− p2

∆

2
=

µ2

2∆
.

So there must be a set S for which

− ln

(
P

(⋂
i∈S

Bi

))
≥ µ2

2∆
.

Then

P

(⋂
i∈I

Bi

)
≤ P

(⋂
i∈S

Bi

)
≤ e−µ2/2∆.

We are done!

8.2 Brun’s sieve

Setup. Let B1, . . . , Bm be events with Xi indicator random variables. Set X =

X1 + · · ·+Xm. As usual there is a hidden parameter n: Bi = Bi(n) and m = m(n).

Set

S(r) =
∑

i1<i2<···<ir

P(Bi1 ∩ · · · ∩Bir).

Let

(X)r = X(X − 1) . . . (X − r + 1),

and (
X

r

)
=

1

r!
(X)r.

The next theorem is the well-known inclusion-exclusion principle and the Bonferroni’s

inequalities.

Theorem 8.2.1. (a) We have

P(X = 0) = P

(
m⋂
i=1

Bi

)
=

m∑
r=0

(−1)rS(r).

(b) For every s we have

2s−1∑
r=0

(−1)rS(r) ≤ P

(
m⋂
i=1

Bi

)
=

2s∑
r=0

(−1)rS(r).
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(c) In general, for every s and k we have

2s−1∑
r=0

(−1)r
(
k + r

k

)
S(k+r) ≤ P(X = k) ≤

2s∑
r=0

(−1)r
(
k + r

k

)
S(k+r).

Proof. Clearly, it is enough to prove part (c) since part (a) and (b) are special cases

of part (c).

The sets B1, . . . , Bm partition the ground set into 2m events called atoms. A set

Bi1 ∩ · · · ∩Bir can be decomposed into 2m−r such atoms. When we decompose each

S(k+r) into 2m−k−r sums of probabilities of atoms, we get that

2s−1∑
r=0

(−1)r
(
k + r

k

)
S(k+r) =

∑
E

c(E)P(E),

where the sum on the right hand side runs over atoms, and c(E) is some constant.

Suppose that the atom E is the intersection of t sets Bi and m − t sets Bj. Then

P(E) will appear in
(

t
k+r

)
expansion of terms S(k+r), whence

c(E) =
2s−1∑
r=0

(−1)r
(
k + r

k

)(
t

k + r

)
=

(
t

k

) 2s−1∑
r=0

(−1)r
(
t− k

r

)
= −

(
t

k

)(
t− k − 1

2s− 1

)
if t > k and c(E) = 1 if t = k. This shows that

2s−1∑
r=0

(−1)r
(
k + r

k

)
S(k+r) ≤ P(X = k)

since P(X = k) is the sum of the probabilities of those atoms that are the intersection

of k sets Bi and m− k sets Bj. Very similarly,

2s−1∑
r=0

(−1)r
(
k + r

k

)
S(k+r) =

∑
E

c′(E)P(E),

where

c′(E) =
2s∑
r=0

(−1)r
(
k + r

k

)(
t

k + r

)
=

(
t

k

) 2s−1∑
r=0

(−1)r
(
t− k

r

)
=

(
t

k

)(
t− k − 1

2s

)
if t > k and c′(E) = 1 if t = k.

Theorem 8.2.2. Suppose that for some constant µ we have that for every fixed r

E
(
X

r

)
= S(r) → µr

r!
.
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Then for every fixed k

P(X = k) → µk

k!
e−µ.

In particular, P(X = 0) → e−µ.

Proof. Let k be fixed. Note that

∞∑
r=0

(−1)r
(
k + r

k

)
µk+r

(k + r)!
=
µk

k!
e−µ.

For a fixed ε let s be chosen such that

max

(∣∣∣∣∣
2s−1∑
r=0

(−1)r
(
k + r

k

)
µk+r

(k + r)!
− µk

k!
e−µ

∣∣∣∣∣ ,
∣∣∣∣∣

2s∑
r=0

(−1)r
(
k + r

k

)
µk+r

(k + r)!
− µk

k!
e−µ

∣∣∣∣∣
)

≤ ε

2
.

Let n0 be large enough such that for every n ≥ n0 and 0 ≤ r ≤ 2s we have(
k + r

k

) ∣∣∣∣S(k+r) − µr

r!

∣∣∣∣ ≤ ε

2(2s+ 1)
.

Then

P(X = k)− µk

k!
e−µ =

(
P(X = k)−

2s−1∑
r=0

(−1)r
(
k + r

k

)
S(k+r)

)

+

(
2s−1∑
r=0

(−1)r
(
k + r

k

)(
S(k+r) − µk+r

(k + r)!

))

+

(
2s−1∑
r=0

(−1)r
(
k + r

k

)
µk+r

(k + r)!
− µk

k!
e−µ

)
≥ 0− 2s

ε

2(2s+ 1)
− ε

2
≥ −ε

and

P(X = k)− µk

k!
e−µ =

(
P(X = k)−

2s∑
r=0

(−1)r
(
k + r

k

)
S(k+r)

)

+

(
2s∑
r=0

(−1)r
(
k + r

k

)(
S(k+r) − µk+r

(k + r)!

))

+

(
2s∑
r=0

(−1)r
(
k + r

k

)
µk+r

(k + r)!
− µk

k!
e−µ

)
≤ 0 + (2s+ 1)

ε

2(2s+ 1)
+
ε

2
= ε

Hence
∣∣∣P(X = k)− µk

k!
e−µ
∣∣∣ ≤ ε. Since ε was arbitrary we get that P (X = k) →

µk

k!
e−µ.

54



Without proof let us mention the multivariate version of this claim.

Theorem 8.2.3. Let λ1 = λ1(n), . . . , λm = λm(n) be non-negative bounded func-

tions. For each n let X1(n), . . . , Xm(n) be non-negative integer valued function in

the same space. Suppose for all r1, . . . , rm ∈ Z+ we have

lim
n→∞

(E((X1)r1(X2)r2 . . . (Xm)rm)− λr11 . . . λ
rm
m ) = 0.

Then X1(n), . . . , Xm(n) are asymptotically independent Poisson random variables

with means λ1, . . . , λm, that is

lim
n→∞

(
P(X1 = k1, . . . Xn = kn)−

m∏
i=1

(
e−λi

λkii
ki!

))
= 0

for all k1, . . . , km ∈ Z+.

8.3 Vertices and triangles

In this section we give an application of the above theorems.

Let G ∼ G(n, p) and let EPIT represent the statement that every vertex lies in

a triangle.

Theorem 8.3.1. Let c > 0 be fixed and let p = p(n), µ = µ(n) satisfy that

e−µ =
c

n
and

(
n− 1

2

)
p3 = µ.

Then

lim
n→∞

P(G(n, p) satisfies EPIT ) = e−c.

Proof. For vertices x, y, z let Bxyz be the event that xyz form a triangle in G. Let

Cx =
⋂

yz Bxyz be the event that there is no triangle on x, and let Xx be the corre-

sponding indicator random variable. Finally, set

X =
∑

x∈V (G)

Xx.

We will show that X has an asymptotic Poisson distribution with parameter c.

According to Theorem 8.2.2 we need to show that for every fixed r

E
(
X

r

)
= S(r) → cr

r!
.
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Consider one term in the sum

S(r) =
∑

1≤i1<···<ir≤n

P(Cxi1
∩ · · · ∩ Cxir

),

that is, P(Cxi1
∩ · · · ∩ Cxir

). Clearly,

Cxi1
∩ · · · ∩ Cxir

=
r⋂

i=1

⋂
y,z

Bxiyz.

To bound this probability we use Janson’s inequalities. We have P(Bxyz) = p3 which

can be assumed to be less than ε = 1/8 as it is o(1). The number of terms is

mr(n) = r

(
n− 1

2

)
−
(
r

2

)
(n− 2) +

(
r

3

)
= r

(
n− 1

2

)
+O(n)

as r is fixed. Finally, ∆ = O(n3p5) since the events Bxiyizi and Bxjyjzj are not

independent if they share an edge which means that they have altogether 4 vertices

from which at least one (as maybe xi = xj) is from the fixed r vertices, and we can

choose at most 3 vertices freely. Hence by Janson’s inequality

S(r) =

(
n

r

)
(1− p3)mr(n)ηn,r,

where

1 ≤ ηn,r ≤ exp

(
1

1− ε
· ∆
2

)
.

Note that

p =

(
2 ln(n/c)

n(n− 1)

)1/3

which means that p = o(n−3/5), consequently ∆ = O(n3p5) = o(1). This means that

exp

(
1

1− ε
· ∆
2

)
= 1 + o(1).

Then(
n

r

)
(1−p3)mr(n)ηn,r ∼

(
n

r

)
e−p3mr(n) ∼

(
n

r

)
e−p3r(n−1

2 ) =

(
n

r

)
e−rµ =

(
n

r

)( c
n

)r
∼ cr

r!
.

(Note that we could have used Remark 8.1.3 too.) Hence by Theorem 8.2.2 we have

P(G(n, p) satisfies EPIT ) = P (X = 0) → e−c.
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9. Martingales

In this chapter we study martingales. It turns out that martingales are especially

amenable to provide tight concentration inequalities in combinatorial problems. Mar-

tingales are tied to various exposure processes that arise very naturally in these prob-

lems. Rather than fighting for independence, martingales seem to take an alternative

route by grasping the phenomenon that if a random variable can change only a small

amount by a small perturbation then it is strongly concentrated around its mean.

This introduction will be more clear after some examples and applications.

9.1 Martingales

Definition 9.1.1. A sequence of random variables (Xn)n is called a martingale if

for all n we have

E(Xn+1|Xn, Xn−1, . . . , X0) = Xn.

Example 9.1.2. Edge exposure martingale. Let G ∼ G(n, p), and f any graph

theoretic function. For a fixed ordering e1, . . . , e(n2)
of the pair of vertices define the

random variables X1, . . . , X(n2)
as follows:

Xi(H) = E(f(G) | for j ≤ i, ej ∈ E(G) ⇔ ej ∈ E(H)).

This means that we expose the first i pairs (whether they are in G or not), and then

we consider the conditional expectation of f based on this observation.

Example 9.1.3. Vertex exposure martingale. Again let G ∼ G(n, p), and f any

graph theoretic function. For a fixed ordering of the vertices define the random

variables X1, . . . , Xn as follows:

Xi(H) = E(f(G) | for x, y ≤ i, (x, y) ∈ E(G) ⇔ (x, y) ∈ E(H)).

This means that we expose the first i vertices, and then we consider the conditional

expectation of f based on this observation.
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Theorem 9.1.4 (Azuma’s inequality). Let 0 = X0, . . . , Xm be a martingale with

|Xi+1 −Xi| ≤ 1 for all 0 ≤ i ≤ m. Let λ > 0 be arbitrary. Then

P(Xm > λ
√
m) < e−λ2/2.

Proof. Set α = λ√
m
, and define Yi = Xi−Xi−1. Then |Yi| ≤ 1, and E(Yi|Xi−1, . . . , X0) =

0. Furthermore, for x ∈ [−1, 1] let

h(x) =
eα + e−α

2
+
eα − e−α

2
x.

Then eαx ≤ h(x). Hence –by some abuse of notation– we have

E(eαYi |Xi−1, . . . , X0)(ti−1, . . . , t0) =
∑
si

eαsiP(Yi = si|X0 = t0, . . . , Xi−1 = ti−1)

≤
∑
si

h(si)P(Yi = si|X0 = t0, . . . , Xi−1 = ti−1)

=
∑
si

(
eα + e−α

2
+
eα − e−α

2
si

)
P(Yi = si|X0 = t0, . . . , Xi−1 = ti−1)

=
eα + e−α

2
+
eα − e−α

2
E(Yi|Xi−1, . . . , X0)(ti−1, . . . , t0)

=
eα + e−α

2
.

It is easy to prove that
eα + e−α

2
≤ eα

2/2.

Then

E(eαXm) = E

(
m∏
i=1

eαYi

)
= E

((
m−1∏
i=1

eαYi

)
E(eαYm|Xm−1, . . . , X0)

)

≤ E

(
m−1∏
i=1

eαYi

)
eα

2/2 = E(eαXm−1)eα
2/2

Then by induction we get that E(eαXm) ≤ eα
2m/2. Hence

P(Xm > λ
√
m) = P(eαXm > eαλ

√
m) < E(eαXm)e−αλ

√
m ≤ eα

2m/2e−αλ
√
m = e−λ2/2.

We are done!
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Theorem 9.1.5. Let c = X0, . . . , Xm be a martingale with |Xi+1 − Xi| ≤ 1 for all

0 ≤ i ≤ m. Let λ > 0 be arbitrary. Then

P(|Xm − c| > λ
√
m) < 2e−λ2/2.

Definition 9.1.6. A graph theoretic function f is said to satisfy the edge Lipshitz

condition if whenever the graphs H and H ′ differ only in an edge, then |f(H) −
f(H ′)| ≤ 1. It satisfies the vertex Lipshitz condition if whenever the graphs H and

H ′ differ only in a vertex, then |f(H)− f(H ′)| ≤ 1.

Theorem 9.1.7. (a) When f satisfies the edge Lipschitz condition the corresponding

edge exposure martingale satisfies |Xi+1 −Xi| ≤ 1.

(b) When f satisfies the vertex Lipschitz condition the corresponding vertex ex-

posure martingale satisfies |Xi+1 −Xi| ≤ 1.

We will prove this intuitively clear statement a bit later. See the next section.

Theorem 9.1.8 (Shamir and Spencer [15]). Let n, p be arbitrary and let c = Eχ(G),
where G ∼ G(n, p). Then

P(|χ(G)− c| > λ
√
n− 1) < 2e−λ2/2.

Proof. Consider the vertex exposure martingale. Since |χ(H)−χ(H ′)| ≤ 1 the vertex

Lipshitz condition is satisfied, and by the previous theorem we have |Xi+1−Xi| ≤ 1.

Then the claim follows from Azuma’s inequality.

Theorem 9.1.9. Let p = n−α, where α > 5
6
fixed. Let G = G(n, p). Then there

exists a u = u(n, p) such that almost always u ≤ χ(G) ≤ u+3. In other words, χ(G)

is concentrated on 4 values.

Lemma 9.1.10. Let α, c be fixed, α > 5
6
. Let p = n−α. Then for almost every

G ∼ G(n, p) every c
√
n vertices of G = G(n, p) can be three-colored.

Proof. Let us bound the probability that for some graph G, where G ∼ G(n, p) there

exists an A ⊆ V (G) with |A| = c
√
n the graph G[A] cannot be three-colored. Then

A has to contain some minimal subset T that G[T ] is not 3-colorable. Then each

degree in G[T ] has to be at least 3, otherwise for a vertex x with degree at most 2
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the graph G[T − x] is 3-colorable by minimality, but then G[T ] is also 3-colorable.

Hence ∑
G

∃A:χ(G[A])≥4

P(G) ≤
∑
G

∃T :e(G[T ])≥ 3
2 |T |,|T |≤c

√
n

P(G) ≤
∑
T

e(G[T ])≥ 3
2 |T |,|T |≤c

√
n

P(T ).

Furthermore, ∑
T

e(G[T ])≥ 3
2 |T |,|T |≤c

√
n

P(T ) ≤
c
√
n∑

t=4

(
n

t

)( (t
2

)
3t/2

)
p3t/2.

Then we use the bounds(
n

t

)
≤
(ne
t

)t
and

( (t
2

)
3t/2

)
≤
(
te

3

)3t/2

.

Then we can bound a term in the above sum as(
ne

t

t3/2e3/2

33/2
n−3α/2

)t

≤
(
c1n

1−3α/2t1/2
)t ≤ (c2n1−3α/2n1/4

)t
= (c2n

−κ)t,

where κ = 3
2
α− 5

4
> 0. And so the above sum is o(1).

Proof of Theorem 9.1.9. Let ε > 0 be fixed. Set λ such that ε = e−λ2/2. Let us say

that a graph G is good if every subset of size at most 2λ
√
n− 1 is 3-colorable. By the

previous lemma if n is large enough and G ∼ G(n, p), then G is good with probability

at least 1 − ε. Define u = u(n, p, ε) as the least value for which P(χ(G) ≤ u) > ε.

By definition of u we have P(χ(G) ≤ u− 1) ≤ ε. We will show that

P(u ≤ χ(G) ≤ u+ 3) ≥ 1− 3ε.

Let Y = Y (G) be the following random variable:

Y (G) = min
χ(G−S)≤u

|S|.

Then

P(Y = 0) = P(χ(G) ≤ u) > ε.

Set EY = µ. Note that Y satisfies the vertex Lipshitz-condition since if G and G′

differ in only one vertex then the size of the minimal sets S and S ′ can differ at most

1. Hence by Azuma’s inequality

P(Y ≤ µ− λ
√
n− 1) < e−λ2/2 = ε,
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and

P(Y ≥ µ+ λ
√
n− 1) < e−λ2/2 = ε.

Note that µ ≤ λ
√
n− 1, otherwise

ε ≤ P(Y = 0) ≤ P(Y ≤ µ− λ
√
n− 1) < ε

would lead to a contradiction. Then

P(Y ≥ 2λ
√
n− 1) ≤ P(Y ≥ µ+ λ

√
n− 1) ≤ ε.

With probability at least 1− 3ε the following things are satisfied: (1) χ(G) ≥ u, (2)

G is good, (3) Y (G) ≤ 2λ
√
n− 1. Then there exists a set S of size at most 2λ

√
n− 1

such that G− S is colorable with at most u colors, and we can color S with extra 3

colors since G is good. Hence χ(G) ≤ u+ 3. Hence

P(u ≤ χ(G) ≤ u+ 3) ≥ 1− 3ε.

9.2 Lipschitz condition

In this section we prove Theorem 9.1.7. It will be convenient to prove a slightly more

general statement.

Setup. Let Ω = AB be the set of functions g : B → A. Consider the measure on Ω

by setting

P(g(b) = a) = pab,

where the values are assumed to be mutually independent. Fix a gradation

∅ = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bm = B.

Let L : Ω → R be a functional, and define the martingale X0, . . . , Xm by setting

Xi(h) = E(L(g) | g(b) = h(b) for all b ∈ Bi).

Hence X0 = EL(g), and Xm = L. We say that the values X0, X1, . . . , Xm satisfies the

Lipschitz condition with respect to the gradation if for all 0 ≤ i ≤ m the following

holds true: if h, h′ differ only on Bi+1 \Bi then |L(h′)− L(h)| ≤ 1.
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Example 9.2.1. When B =
(
[n]
2

)
and A = {0, 1}, and p1b = p, p0b = 1 − p we get

back the G(n, p) model. If Bi contains the first i pairs, then we get back the edge

exposure martingale. If Bi contains all pairs induced by the first i vertices then we

get back the vertex exposure martingale.

Theorem 9.2.2. Let L satisfy the Lipschitz-condition. Then the corresponding mar-

tingale satisfies |Xi+1 −Xi| ≤ 1 for all 0 ≤ i ≤ m− 1 and h ∈ Ω.

Proof. Let H be the family of h′ that agree with h on Bi+1. Then

Xi+1(h) =
∑
h′∈H

L(h′)P(g = h′|g = h on Bi+1).

For each h′ in H let H[h′] be family of h∗ that agree with h′ on all points except on

Bi+1 \Bi. Then the sets H[h′] is a partition of h∗ agreeing on h with Bi. Hence

Xi(h) =
∑
h′∈H

∑
h∗∈H[h′]

L(h∗)P(g = h∗|g = h∗ on Bi+1)P(g = h∗ on Bi+1|g = h∗ on Bi).

Note that

P(g = h∗|g = h∗ on Bi+1) = P(g = h′|g = h′ on Bi+1)

for h∗ ∈ H[h′], namely they are both equal to
∏

b∈B\Bi+1
ph′(b),b =

∏
b∈B\Bi+1

ph∗(b),b.

Since h′ = h on Bi+1 we can further write it as:

P(g = h∗|g = h∗ on Bi+1) = P(g = h′|g = h on Bi+1).

For the ease of notation, set

wh′ = P(g = h′|g = h on Bi+1) and qh∗ = P(g = h∗ on Bi+1|g = h on Bi).

Then

|Xi+1(h)−Xi(h)| =
∑

h′∈H[h]

wh′

L(h′)− ∑
h∗∈H[h′]

L(h∗)qh∗


≤
∑
h′∈H

wh′

∑
h∗∈H(h′)

qh∗ |L(h′)− L(h∗)|

≤
∑
h′∈H

wh′

∑
h∗∈H(h′)

qh∗

= 1.

We are done.
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9.3 More applications

9.3.1 Image of a random function

Let g be a random function from [n] → [n], and let L(g) be the size of the image.

Then

EL(g) = n− n

(
1− 1

n

)n

,

since the probability that g does not take a fixed value y is
(
1− 1

n

)n
. Note that

n− n

e
≤ n− n

(
1− 1

n

)n

≤ n− n− 1

e
.

Clearly, L satisfies the Lipschitz condition. Hence

P
(∣∣∣∣L(g)− n

(
1− 1

e

)∣∣∣∣ > λ
√
n+ 1

)
< 2e−λ2/2.

9.3.2 Expansions of sets in cubes

Let dH be the Hamming distance on {0, 1}n, i. e., dH(x, y) = |{i |xi ̸= yi}|. For

A ⊆ {0, 1}n and some s ∈ R let

B(A, s) = {y | ∃x ∈ A : dH(x, y) ≤ s}.

Then A ⊆ B(A, s) for every s ≥ 0.

Theorem 9.3.1. Let ε, λ satisfy ε = e−λ2/2. Then the following holds true: if |A| ≥
ε2n then |B(A, 2λ

√
n)| ≥ (1− ε)2n.

Proof. We can consider {0, 1}n as a probability space with the uniform distribution

on it. Let X be the following random variable:

X(y) = min
x∈A

dH(x, y).

We can consider the martingale X0, X1, . . . , Xn with respect to the gradation, where

at Xi we expose the first i coordinates. Note that X satisfies the Lipschitz condition

as |X(y)−X(y′)| ≤ 1 if y and y′ differ in at most 1 coordinate. Let EX = µ. Then

P(X < µ− λ
√
n) < e−λ2/2 = ε and P(X > µ+ λ

√
n) < e−λ2/2.

Note that µ ≤ λ
√
n since if µ > λ

√
n then

ε ≤ |A|
2n

= P(X = 0) ≤ P(X < µ− λ
√
n) < e−λ2/2 = ε
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would lead to a contradiction. Therefore µ ≤ λ
√
n, then

1− |B(A, 2λ
√
n)|

2n
= P(X > 2λ

√
n) ≤ P(X > µ+ λ

√
n) < e−λ2/2 = ε.

Then |B(A, 2λ
√
n)| ≥ (1− ε)2n.
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10. Entropy

10.1 Information and counting

The entropy of a probability distribution of p = (p1, . . . , pn) is

H(p) =
n∑

i=1

pi ln
1

pi
.

The intuition behind entropy that it encodes certain information contained in the

probability distribution. This intuition can be formalized by various inequalities, see

Proposition 10.2.1. For instance,

H(p) ≤ lnn,

and equality holds true if and only if p is the uniform distribution, i. e., p =

( 1
n
, . . . , 1

n
). Based on this inequality one can prove lower bounds in various counting

problem. Suppose that we would like to give a lower bound to the cardinality of

some set S. If we can give a probability distribution p on S and compute H(p), then

we know that |S| ≥ exp(H(p)). Another idea provides upper bound on |S|. Here

we start from the uniform distribution on the set S, and uses entropy inequalities

such as Shearer’s inequality (Theorem 10.2.6) to give an upper bound on the entropy

of this uniform distribution that is ln |S|. Such strategy will be carried out in the

case of matchings, see Brégman’s theorem (Theorem 10.3.1), and in the case of

homomorphisms, see the theorem of Galvin and Tetali (Theorem 10.4.1).

10.2 Basic properties of entropy

In this section we give a brief account into the theory of entropy. For a thorough

treatment, see for example [7].
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Let X be a discrete random variable taking its values in a finite set. The range

of X will be denoted by R(X). The entropy of X is defined as

H(X) =
∑

x∈R(X)

P(X = x) ln
1

P(X = x)
.

In case of an event Q we write

H(X|Q) =
∑

x∈R(X)

P(X = x|Q) ln 1

P(X = x|Q)
.

If X and Y are discrete random variables then the conditional entropy is defined as

H(X|Y ) =
∑

y∈R(Y )

P(Y = y)H(X|{Y = y})

=
∑

y∈R(Y )

P(Y = y)
∑

x∈R(X)

P(X = x|Y = y) ln
1

P(X = x|Y = y)
.

Next we collect some basic facts about entropy.

Proposition 10.2.1. We have

(a) 0 ≤ H(X) ≤ ln |R(X)|. Furthermore, if X has the uniform distribution on R(X)

then H(X) = ln |R(X)|.
(b) H(X|Y ) = H(X, Y )−H(Y ).

(c) H(X, Y ) ≤ H(X) +H(Y ).

(d) H(X,Z|Y ) ≤ H(X|Y ) +H(Z|Y ).

(e) H(X) ≤ H(X, Y ).

(f) H(X, Y, Z) +H(Y ) ≤ H(X, Y ) +H(Y, Z).

(g) H(X|Y, Z) ≤ H(X|Y ).

(h) H(X|Y ) ≤ H(X|f(Y )).

(j) H(f(X)|X) = 0 , alternatively, H(f(X), X) = H(X).

(k) H(f(X)|Y ) ≤ H(X|Y ).

Remark 10.2.2. In the following proof we will often need Jensen’s inequality. Re-

call that if f is a convex function on the interval [a, b], and a1, . . . , an ∈ [a, b] and

p1, p2, . . . , pn non-negative numbers with sum 1, then∑
i=1

pif(ai) ≥ f

(
n∑

i=1

piai

)
.

If f is concave, then the inequality is the opposite:∑
i=1

pif(ai) ≤ f

(
n∑

i=1

piai

)
.
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Proof. (a) The lower bound is clear from the definition since each term is non-

negative. The upper bound follows from Jensen’s inequality since f(x) = ln(x) is a

concave function (indeed, f ′′(x) = −1
x2 < 0). So let pi = P(X = x) and ai =

1
P(X=x)

then

H(X) =
∑

x∈R(X)

P(X = x) ln
1

P(X = x)
≤ ln

 ∑
x∈R(X)

P(X = x) · 1

P(X = x)

 = ln |R(X)|.

Clearly, we have equality if and only if X has the uniform distribution on R(X), and

then H(X) = ln |R(X)|.
(b)

H(X|Y ) =
∑

y∈R(Y )

P(Y = y)H(X|{Y = y})

=
∑

y∈R(Y )

P(Y = y)
∑

x∈R(X)

P(X = x|Y = y) ln
1

P(X = x|Y = y)

=
∑

y∈R(Y )

P(Y = y)
∑

x∈R(X)

P(X = x, Y = y)

P(Y = y)
ln

P(Y = y)

P(X = x, Y = y)

=
∑

x∈R(X),y∈R(Y )

P(X = x, Y = y) ln
P(Y = y)

P(X = x, Y = y)

= H(X, Y )−H(Y ).

(c) Note that

H(X) +H(Y )−H(X, Y ) =
∑

x∈R(X),y∈R(Y )

P(X = x, Y = y) ln
P(X = x, Y = y)

P(X = x)P(Y = y)
.

Now let us apply Jensen’s inequality to the function f(x) = x lnx with

pi = P(X = x)P(Y = y) and ai =
P(X = x, Y = y)

P(X = x)P(Y = y)
.

Here f(x) is convex as f ′′(x) = 1
x
> 0, and naturally the sum of pi’s is 1. Let

us introduce the notation I(X, Y ) = H(X) + H(Y ) − H(X, Y ). This is called the

mutual information.

I(X, Y ) = H(X) +H(Y )−H(X, Y )

=
∑

x∈R(X),y∈R(Y )

P(X = x, Y = y) ln
P(X = x, Y = y)

P(X = x)P(Y = y)

67



=
∑

x∈R(X),y∈R(Y )

P(X = x)P(Y = y)
P(X = x, Y = y)

P(X = x)P(Y = y)
ln

P(X = x, Y = y)

P(X = x)P(Y = y)

=
∑
i

pif(ai) ≥ f

(∑
i

piai

)

= f

 ∑
x∈R(X),y∈R(Y )

P(X = x)P(Y = y) · P(X = x, Y = y)

P(X = x)P(Y = y)


= f(1) = 0

(d) By the previous part we have

H(X|Y = y) +H(Z|Y = y) ≥ H(X,Z|Y = y)

for all y ∈ R(Y ). Hence

H(X|Y ) +H(Z|Y ) =
∑

y∈R(Y )

P(Y = y)(H(X|Y = y) +H(Z|Y = y))

≥
∑

y∈R(Y )

P(Y = y)H(X,Z|Y = y)

= H(X,Z|Y )

(e) We have

H(X, Y )−H(X) = H(Y |X) =
∑
x∈X

P(X = x)H(Y |X = x) ≥ 0

termwise.

(f) This is a direct consequence of H(X|Y ) + H(Z|Y ) ≥ H(X,Z|Y ) using that

H(X|Y ) = H(X, Y ) − H(Y ), H(Z|Y ) = H(Z, Y ) − H(Y ), and H(X,Z|Y ) =

H(X,Z, Y )−H(Y ).

(g) This is again a direct consequence of H(X|Y ) + H(Z|Y ) ≥ H(X,Z|Y ) or

equivalently H(X, Y, Z) + H(Y ) ≤ H(X, Y ) + H(Y, Z) using that H(X|Y, Z) =

H(X, Y, Z)−H(Y, Z) and H(X|Y ) = H(X, Y )−H(Y ).

(h) We have seen that

H(X|Y ) =
∑

x∈R(X),y∈R(Y )

P(X = x, Y = y) ln
P(Y = y)

P(X = x, Y = y)
.

Similarly,

H(X|f(Y )) =
∑

x∈R(X),z∈R(f(Y ))

P(X = x, f(Y ) = z) ln
P(f(Y ) = z)

P(X = x, f(Y ) = z)
.
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Now fix an x ∈ R(X) and a z ∈ R(f(Y )), and observe that

Tx,z :=
∑

y:f(y)=z

P(X = x, Y = y) ln
P(Y = y)

P(X = x, Y = y)

= P(X = x, f(Y ) = z)
∑

y:f(y)=z

P(X = x, Y = y)

P(X = x, f(Y ) = z)
ln

P(Y = y)

P(X = x, Y = y)

≤ P(X = x, f(Y ) = z) ln

 ∑
y:f(y)=z

P(Y = y)

P(X = x, f(Y ) = z)


≤ P(X = x, f(Y ) = z) ln

P (f(Y ) = z)

P(X = x, f(Y ) = z)
.

In the second step we used Jensen’s inequality to the function f(x) = ln x with

pi =
P(X = x, Y = y)

P(X = x, f(Y ) = z)
and ai =

P(Y = y)

P(X = x, Y = y)
.

Now by summing these inequalities for all x ∈ R(X) and z ∈ R(f(Y )) we get that

H(X|Y ) ≤ H(X|f(Y )).

(j) H(f(X)|X) =
∑

x∈R(X) P(X = x)H(f(X)|{X = x}) = 0 since the inner sum

H(f(X)|{X = x}) = 0 for each x ∈ R(X). By part (b) we have 0 = H(f(X)|X) =

H(f(X), X)−H(X).

An immediate corollary of part (c) is the following.

Theorem 10.2.3. We have

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi).

Let us see some applications of it.

Theorem 10.2.4. Let A be a family of subsets of {1, 2, . . . , n} and suppose that the

fraction of sets Ak ∈ A containing the element i is pi. Then

|A| ≤ exp

(
n∑

i=1

H(pi)

)
,

where H(x) = −x lnx− (1− x) ln(1− x).
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Proof. Pick an element of A uniformly at random, and let (X1, . . . , Xn) be its char-

acteristic vector. Then ln |A| = H(X1, . . . , Xn) by part (a) of Proposition 10.2.1.

Then

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi) =
n∑

i=1

H(pi)

implies the claim.

Theorem 10.2.5. Let p ≤ 1/2 then∑
k≤np

(
n

k

)
≤ exp (nH(p)) ,

where H(x) = −x lnx− (1− x) ln(1− x).

Proof. Let us consider the family A of subsets of {1, 2, . . . , n} of size at most np.

Then

|A| =
∑
k≤np

(
n

k

)
.

Let pi be the fraction of sets containing the element i. Then by symmetry p1 = · · · =
pn. We also have np1 =

∑n
i=1 pi = E|A| ≤ np, where the expected value refers to

picking a set A ∈ A uniformly at random. Hence p1 ≤ p ≤ 1/2, and so H(p1) ≤ H(p)

since H(x) is monotone increasing on the interval [0, 1/2]. Hence

∑
k≤np

(
n

k

)
= |A| ≤ exp

(
n∑

i=1

H(pi)

)
= exp (nH(p1)) ≤ exp (nH(p)) .

For a random vector X = (X1, . . . , Xm) and an A ⊆ [m] let XA = (Xi | i ∈ A).

Theorem 10.2.6 (Shearer [6]). Let X = (X1, . . . , Xm) be a random vector, and A
be a collection of subsets of [m] possibly with repeats such that each element of [m]

is contained in at least t members of A. Then

H(X) ≤ 1

t

∑
A∈A

H(XA).

Proof. By part (f) of Proposition 10.2.1 we know that

H(XA) +H(XB) ≥ H(XA∩B) +H(XA∪B).
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So if we have two sets A,B ∈ A such that neither A ⊆ B nor B ⊆ A, then we

can replace them by A ∩ B and A ∪ B. We can do this step even if A and B are

disjoint. This way we cannot increase
∑
H(XA) and every element will be contained

in exactly the same number of sets. Moreover we cannot do this step infinitely many

times because

|A|2 + |B|2 ≤ |A ∩B|2 + |A ∩B|2

with strict inequality if A \ B and B \ A are non-empty. So in each step the sum∑
|A|2 will increase by at least 1 and it is at most |A|m2. This means that the

process will halt. For the final set system B it will be true that for any A,B ∈ B we

have A ⊆ B or B ⊆ A. This means that we get a set system A1 ⊆ A2 ⊆ · · · ⊆ An

where n = |A| = |B|. Since every element is still contained in at least t sets we get

that the last t sets must be the whole set [m]. Hence

H(X) ≤ 1

t

∑
A∈B

H(XA) ≤
1

t

∑
A∈A

H(XA).

Let us see some applications of Shearer’s inequality.

Theorem 10.2.7. Let F be a family of vectors in S1×· · ·×Sn. Let G = {G1, . . . , Gm}
be a collection of subsets of N = {1, 2, . . . , n}, and suppose that each element i ∈ N

belongs to at least k members of G. For each 1 ≤ i ≤ m let Fi be the set of all

projections of the members of F on Gi. Then

|F|k ≤
m∏
i=1

|Fi|.

Proof. Pick an element of F uniformly at random, and let the corresponding random

variable be X = (X1, . . . , Xn). Then

k ln |F| = kH(X) ≤
m∑
i=1

H(XGi
) ≤

m∑
i=1

ln |Fi|

by Theorem 10.2.6 and part (a) of Proposition 10.2.1. Hence

|F|k ≤
m∏
i=1

|Fi|.
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Theorem 10.2.8. Let B be a measurable body in the n-dimensional Euclidean space,

and let Vol(B) denote its n-dimensional volume, and let Vol(Bi) denote its (n− 1)-

dimensional volume of the projection of B on the hyperplane spanned by the coordi-

nates besides the i-th one. Then

Vol(B)n−1 ≤
n∏

i=1

Vol(Bi).

Proof. Take finer and finer grids, and let F be the set of lattice vectors contained in

B. Apply the previous theorem to Gi = N \ {i}, and in the limit we get that

Vol(B)n−1 ≤
n∏

i=1

Vol(Bi).

10.3 Matchings: Brégman’s theorem

Theorem 10.3.1 (Brégman [5]). Let G = (A,B,E) be a bipartite graph with |A| =
|B| = n. Assume that the degrees of the vertices of A are d1, . . . , dn. Let pm(G)

denote the number of perfect matchings of G. Then

pm(G) ≤
n∏

i=1

(di!)
1/di .

The following theorem on regular bipartite graphs is an immediate corollary

of Brégman’s theorem. One can prove that the condition on bipartiteness can be

dropped.

Theorem 10.3.2. Let pm(G) denote the number of perfect matchings. Then for a

d–regular bipartite graph G we have

pm(G)1/v(G) ≤ pm(Kd,d)
1/v(Kd,d)

Proof of Theorem 10.3.1. We will consider a perfect matching as an f : [n] → [n],

f(i) = j if (ai, bj) is an edge of the perfect matching. Let X be the random vector

(f(1), . . . , f(n)), where we choose a perfect matching f uniformly among all perfect

matchings. Then the entropy of X is H(X) = ln pm(G). Next we will give an upper

bound on H(X). In general, we have

H(X) = H(X1) +
n∑

i=2

H(Xi|Xi−1, . . . , X1).
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We can think of this process as follows: we reveal one by one the neighbors of the

vertices in A in the random matching f . When we arrive to some fixed vertex a ∈ A

it might occur that some of its neighbors are already covered by the perfect matching

so we can be sure that the conditional entropy is definitely not ln da, but something

smaller. Unfortunately, it is not clear how much smaller it is since we have no control

on how many neighbors of a are already occupied. We overcome this difficulty with

a little trick: choose a random permutation π ∈ Sn and apply the chain rule for this

random order.

H(X) = H(Xπ(1)) +
n∑

i=2

H(Xπ(i)|Xπ(i−1), . . . , Xπ(1)).

It will be more convenient to rewrite it as follows:

H(X) =
∑
v∈A

H(Xv|X{v′:π(v′)<π(v)}).

Let us average it over all n! permutations of Sn:

H(X) =
∑
v∈A

1

n!

∑
π∈Sn

H(Xv|X{v′:π(v′)<π(v)}).

For a fixed vertex v ∈ A let us study the quantity

1

n!

∑
π∈Sn

H(Xv|X{v′:π(v′)<π(v)}).

For a moment let us stop to examine a general conditional entropy:

H(X|Y ) =
∑

y∈R(Y )

P(y)
∑

x∈R(X)

P(X = x|Y = y) ln
1

P(X = x|Y = y)

≤
∑

y∈R(Y )

P(y) ln |R(X|Y = y)|.

The point is that the range of X conditioned on Y = y might be smaller than the

range of X. In particular, this happens if some neighbor of the vertex v is already

occupied. So let Nv(π, f) be the number of choices remaining for v if we already

know f(v′) for all v′ for which π(v′) < π(v). Then

1

n!

∑
π∈Sn

H(Xv|X{v′:π(v′)<π(v)}) ≤
dv∑
j=1

P(Nv(π, f) = j) ln j
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=
dv∑
j=1

ln j
|{(π, f) | Nv(π, f) = j}|

n! · pm(G)
.

Now the crucial observation is that

|{(π, f) | Nv(π, f) = j}|
n! · pm(G)

=
1

dv

independently of j. In fact, it is independent of f : once we have fixed f the proba-

bility that Nv(π, f) = j is 1
dv
. The reason is simple: let us consider the dv vertices

in A whose f -neighbors are exactly the neighbors of v. If we keep only the ordering

of these vertices from π, then with probability 1
dv

the vertex v will be the first, with

probability 1
dv

the vertex v will be the second, etc. Hence

1

n!

∑
π∈Sn

H(Xv|X{v′:π(v′)<π(v)}) ≤
dv∑
j=1

ln j

dv
=

ln(dv!)

dv
.

Hence

H(X) ≤
∑
v∈V

ln(dv!)

dv
.

Since H(X) = ln pm(G) we get that

pm(G) ≤
∏
v∈A

(dv!)
1/dv .

10.4 Homomorphisms

Let G and H be two graphs. A map φ : V (G) → V (H) is a homomorphism if

(φ(u), φ(v)) ∈ E(H) whenever (u, v) ∈ E(G). The number of homomorphisms from

G to H is denoted by hom(G,H). Counting the number of independent sets of

a graph G or the number of proper q-colorings of G are both special instances of

hom(G,H). In the latter case H = Kq. In the former case H is the graph on 2

vertices that are adjacent, and one of them also has a self-loop.

Theorem 10.4.1 (Galvin and Tetali [13]). Let G be a d–regular bipartite graph, and

H be a fixed graph. Then

hom(G,H)1/v(G) ≤ hom(Kd,d, H)1/v(Kd,d).

74



Proof. Let G = (A,B,E) and Kd,d = (Ad, Bd, Ed). First, we suppose that H is a

bipartite graph, and V (H) = U ∪L is the partition. (Later we remove this condition

on H.) Let

HomL,U(G,H) = {f ∈ Hom(G,H) : f(A) ⊆ L, f(B) ⊆ U}.

First we consider |HomL,U(Kd,d, H)|. For any set S ⊆ L let

H(S) = {f ∈ HomL,U(Kd,d, H) | f(Ad) = S},

T (S) = {g : [d] → S : g surjective},

and

CU(S) = {j ∈ U : (j, i) ∈ E(H) ∀i ∈ S}.

Then

|HomL,U(Kd,d, H)| =
∑
S⊆L

|T (S)||CU(S)|d.

Next we show that

|HomL,U(G,H)| ≤ |HomL,U(Kd,d, H)|v(G)/(2d).

Let f be chosen uniformly at random from HomL,U(G,H). We think of f as a vector

(f(v))v∈V , and fS denotes the random vector (f(v))v∈S. Let Mv = {f(w) |w ∈
N(v)}. Note that Mv is a set, while fN(v) is a vector. Clearly, fN(v) carries more

information than Mv, or in other words, Mv is a function of fN(v). For v ∈ B and

S ⊆ L let mv(S) denote the probability P(Mv = S). Clearly,
∑

S mv(S) = 1. Then

ln |HomL,U(G,H)| (a)
= H(fV )

(b)
= H(fA) +H(fB|fA)
(d)

≤ H(fA) +
∑
v∈B

H(f(v)|fA)

(g)

≤ H(fA) +
∑
v∈B

H(f(v)|fN(v))

(S)

≤ 1

d

∑
v∈B

H(fN(v)) +
∑
v∈B

H(f(v)|fN(v))

(j)
=

1

d

∑
v∈B

H(fN(v),Mv) +
∑
v∈B

H(f(v)|fN(v))
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(b)
=

1

d

∑
v∈B

(H(Mv) +H(fN(v)|Mv)) +
∑
v∈B

H(f(v)|fN(v))

=
1

d

∑
v∈B

(H(Mv) +H(fN(v)|Mv) + dH(f(v)|fN(v)))

(h)

≤ 1

d

∑
v∈B

(H(Mv) +H(fN(v)|Mv) + dH(f(v)|Mv))

def
=

1

d

∑
v∈B

∑
S⊆L

(
mv(S) ln

1

mv(S)
+mv(S)H(fN(v)|{Mv = S})

)
+

+
1

d

∑
v∈B

∑
S⊆L

(dmv(S)H(f(v)|{Mv = S}))

(a)

≤ 1

d

∑
v∈B

∑
S⊆L

(
mv(S) ln

1

mv(S)
+mv(S) ln |T (S)|+ dmv(S) ln |CU(S)|

)
=

1

d

∑
v∈B

∑
S⊆L

mv(S) ln
|T (S)||CU(S)|d

mv(S)

(J)

≤ 1

d

∑
v∈B

ln

(∑
S⊆L

|T (S)||CU(S)|d
)

=
v(G)

2d
ln |HomL,U(Kd,d, H)|.

On the top of the signs = or ≤ one can see which part of Proposition 10.2.1 we

have used. The sign S refers to Shearer’s inequality, Theorem 10.2.6. The sign J

refers to Jensen’s inequality applied to lnx. The def simply means that we use the

definition of the (conditional) entropy. Finally, we use our previously found formula

for |HomL,U(Kd,d, H)|.

Now to finish the proof of the theorem we remove the condition thatH is bipartite.

Let H ′ = H ×K2, so H
′ is a bipartite graph with vertex set V (H ′) = V (H)×{0, 1}

and ((v, 0), (w, 1)) ∈ E(H ′) if (v, w) ∈ E(H). Let U = {(v, 0) | v ∈ V (H)} and

L = {(v, 1) | v ∈ V (H)}. Then

|HomL,U(G,H ′)| = |Hom(G,H)|.

Then we are done.
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10.5 Frankl’s union-closed set conjecture

A set system F ⊆ 2[n] is called union-closed if A,B ∈ F implies that A ∪ B ∈ F .

The following conjecture due to Péter Frankl is one of the best known conjectures in

combinatorics.

Conjecture 10.5.1. Let F ⊆ 2[n] be a union-closed set system that contains at least

one non-empty set. Then there is an element i ∈ [n] that is contained in at least 1/2

of the sets of F .

Though this conjecture is not proved there was a significant breakthrough due

to Gilmour and the authors of the follow-up papers: Alweiss, Huang, Sellke; Sahin;

Chase and Lovett.

Theorem 10.5.2. Let F ⊆ 2[n] be a union-closed set system that contains at least

one non-empty set. Then there is an element i ∈ [n] that is contained in at least
3−

√
5

2
of the sets of F .

From now on let ψ = 3−
√
5

2
≈ 0.381 and φ = 1− ψ =

√
5−1
2

≈ 0.618.

In the proof of Theorem 10.5.2 we will use the following lemma whose proof we

omit.

Lemma 10.5.3. Let h(x) = −x ln(x)− (1− x) ln(1− x). Then

(a) The minimum of h(x2)
xh(x)

for x ∈ [0, 1] is obtained at x = φ, where its value is 1
φ
.

(b) The minimum of the function

f(x, y) :=
h(xy)

xh(y) + yh(x)

for x, y ∈ [0, 1] is attained at (x, y) = (φ, φ) where its value is 1
2φ
.

Note that φ2 = 1− φ, and so h(φ2) = h(1− φ) = h(φ).

The following lemma is the key lemma, the proof of Theorem 10.5.2 will imme-

diately follows from it.

Lemma 10.5.4. Let A,B be two independent random variables taking values in

{0, 1}n. Assume for all i ∈ [n] we have P(Ai = 0) ≥ p and P(Bi = 0) ≥ p. Then

H(A ∪B) ≥ p

2φ
(H(A) +H(B)).
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Proof. Let A<i = (A1, . . . , Ai−1). Then

H(A ∪B) =
n∑

i=1

H((A ∪B)i|(A ∪B)<i) ≥
n∑

i=1

H((A ∪B)i|A<i, B<i)

since (A∪B)<i can be determined given by A<i, B<i. Let p(x) = P(Ai = 0|A<i = x)

and q(y) = P(Bi = 0|B<i = y). Then

H((A ∪B)i|A<i = x,B<i = y) = h(p(x)q(y)) ≥ 1

2φ
(p(x)h(q(y)) + q(y)h(p(y)).

Averaging for all x, y we get that

H((A ∪B)i|A<i, B<i) ≥
1

2φ
(EA<i

p(A<i) · EB<i
h(q(B<i)) + EB<i

q(B<i) · EA<i
h(p((A<i))

=
1

2φ
(P(Ai = 0)H(Bi|B<i) + P(Bi = 0)H(Ai|A<i))

≥ p

2φ
(H(Ai|A<i) +H(Bi|B<i))

By summing it for i ∈ [n] we get the claim.

Now we are ready to prove Theorem 10.5.2.

Proof of Theorem 10.5.2. Suppose for contradiction that for some union-closed set

family F every i ∈ [n] appears in at most ψ fraction of the sets. Let A,B be two

independent copies of the uniform distribution on F . Then P(Ai = 0) > 1−Ψ = φ

and P(Ai = 0) > φ since ψ is irrational. So

H(A ∪B) >
1

2
(H(A) +H(B)) = ln |F|.

Since F is union-closed we get that H(A ∪B) ≤ ln |F|, contradiction.
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